Skip to content
/ PRCpy Public

Simple modular python package for physical reservoir computing. Use your own experimental data.

License

Notifications You must be signed in to change notification settings

OSJL-py/PRCpy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

90 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PRCpy: A Python Package for Processing of Physical Reservoir Computing

PRCpy is a Python package designed to ease experimental data processing for physical reservoir computing.

Features

  • Data handling and preprocessing.
  • Customizable data processing pipelines for various research needs.

Installation

PRCpy requires Python 3.9 or later.

Using pip

pip install prcpy

Using Poetry

poetry add prcpy

Note

Latest release is always recommended.

PIP: pip install prcpy --upgrade
POERTY: poetry update prcpy

Check your version by running:

prcpy.__version__

General usage overview

  1. Define data path
  2. Define pre-processing parameters
  3. Create RC pipeline
  4. Define target and add to pipeline
  5. Define model for training
  6. Define RC parameters
  7. Run RC

Example:

import PRCpy

from prcpy.RC import Pipeline
from prcpy.TrainingModels.RegressionModels import define_Ridge
from prcpy.Maths.Target_functions import get_npy_data, generate_square_wave

Define data directory and processing parameters

Note: Data files must match the string specified by "prefix". See examples/data for example data files.

data_dir_path = "your/data/path"
prefix = "scan"
process_params = {
    "Xs": "Frequency",
    "Readouts": "Spectra",
    "remove_bg": False,
    "bg_fname": "background_data.txt",
    "smooth": False,
    "smooth_win": 51,
    "smooth_rank": 4,
    "cut_xs": False,
    "x1": 2,
    "x2": 5,
    "normalize_local": False,
    "normalize_global": False,
    "sample": False,
    "sample_rate": 13,
    "transpose": False
}

Create RC pipeline

rc_pipeline = Pipeline(data_dir_path, prefix, process_params)

Target generation

Transformation
num_periods = 10
length = rc_pipeline.get_df_length()
target_values = generate_square_wave(length,num_periods)
Forecasting
mg_path = "mackey_glass_t17.npy"
target_values = get_npy_data(mg_path, norm=True)
Add target to pipeline
rc_pipeline.define_target(target_values)

Define model

model_params = {
        "alpha": 1e-3,
        "fit_intercept": True,
        "copy_X": True,
        "max_iter": None,
        "tol": 0.0001,
        "solver": "auto",
        "positive": False,
        "random_state": None,
    }
    
model = define_Ridge(model_params)

Define RC parameters

Set "tau": 0 for transformation.

rc_params = {
        "model": model,
        "tau": 10,
        "test_size": 0.3,
        "error_type": "MSE"
    }

Run RC

rc_pipeline.run(rc_params)

Get results & reservoir metrics

results = rc_pipeline.get_rc_results()

rc_pipeline.define_input(target_values)
nl = rc_pipeline.get_non_linearity()
lmc = rc_pipeline.get_linear_memory_capacity()[0]

Authors & Maintainers

We are a neuromorphic computing division within the UCL Spintronics Group at London Centre for Nanotechnology, University College London, UK. For any queries about PRCpy, please contact Harry Youel (harry.youel.19@ucl.ac.uk) or Daniel Prestwood (daniel.prestwood.22@ucl.ac.uk).

Research enquries

For collaborations or research enquires, please contact Prof. Hide Kurebayashi.

Find out more on PRC

PRCpy

RC publications from the group

Research articles

Review/perspectives

Outreach

Recent PRC publications

TBA.

Contributing

Any community contributions are welcome. Please refer to the project's GitHub repository for contribution guidelines.