|
| 1 | +"""Functions for migrating PEtab files from different versions""" |
| 2 | + |
| 3 | +import logging |
| 4 | +import pandas as pd |
| 5 | + |
| 6 | +from . import Problem |
| 7 | +from . import get_notnull_columns |
| 8 | +from .C import * |
| 9 | +from .lint import lint_problem |
| 10 | +from .measurements import get_placeholders |
| 11 | +from .core import get_observable_id |
| 12 | +from .sbml import get_sigmas, get_observables |
| 13 | + |
| 14 | + |
| 15 | +def sbml_observables_to_table(problem: Problem): |
| 16 | + """Transform PEtab files where observables are defined inside the SBML |
| 17 | + model to the newer format where they are specified in a separate table. |
| 18 | +
|
| 19 | + For details see https://github.com/ICB-DCM/PEtab/issues/241. |
| 20 | +
|
| 21 | + Modifies ``problem`` in place. Does not alter any files. |
| 22 | +
|
| 23 | + Assumes the input is adheres to the PEtab format. You may want to check |
| 24 | + that with ``petablint`` from PEtab 0.0.2. |
| 25 | + """ |
| 26 | + |
| 27 | + logging.basicConfig(level=logging.DEBUG) |
| 28 | + |
| 29 | + # Ensure all measurements for the same observable have the same |
| 30 | + # observableTransformation and noiseModel |
| 31 | + |
| 32 | + measurement_df = problem.measurement_df |
| 33 | + grouping_cols = get_notnull_columns( |
| 34 | + measurement_df, [OBSERVABLE_ID, OBSERVABLE_TRANSFORMATION, |
| 35 | + NOISE_DISTRIBUTION]) |
| 36 | + grouped = measurement_df.groupby(grouping_cols).count().reset_index() |
| 37 | + |
| 38 | + if len(grouped[OBSERVABLE_ID]) != len(grouped[OBSERVABLE_ID]): |
| 39 | + raise ValueError("In order to create an observable table, all " |
| 40 | + "measurements for the same observable must have the " |
| 41 | + "same observableTransformation and noiseModel." |
| 42 | + "Multiple observableTransformation and noiseModel " |
| 43 | + "has to be handled by different observables.") |
| 44 | + |
| 45 | + # get observables and sigmas from SBML file and directly remove them |
| 46 | + observables = get_observables(problem.sbml_model, remove=True) |
| 47 | + sigmas = get_sigmas(problem.sbml_model, remove=True) |
| 48 | + assert observables.keys() == sigmas.keys() |
| 49 | + |
| 50 | + if not observables: |
| 51 | + raise RuntimeError("No observables in SBML model to convert. " |
| 52 | + "Has this model already been processed?") |
| 53 | + |
| 54 | + # Create observable dataframe and add to `problem` |
| 55 | + |
| 56 | + for obs_id, noise in sigmas.items(): |
| 57 | + observables[obs_id][NOISE_FORMULA] = noise |
| 58 | + |
| 59 | + # set observableTransformation and noiseModel |
| 60 | + for obs_id_long in observables.keys(): |
| 61 | + obs_id = get_observable_id(obs_id_long) |
| 62 | + cur_mes_df = measurement_df[measurement_df[OBSERVABLE_ID] == obs_id] |
| 63 | + if not len(cur_mes_df): |
| 64 | + # observable defined, but no measurements |
| 65 | + continue |
| 66 | + |
| 67 | + if OBSERVABLE_TRANSFORMATION in cur_mes_df: |
| 68 | + observables[obs_id_long][OBSERVABLE_TRANSFORMATION] = \ |
| 69 | + cur_mes_df[OBSERVABLE_TRANSFORMATION].values[0] |
| 70 | + else: |
| 71 | + observables[obs_id_long][OBSERVABLE_TRANSFORMATION] = LIN |
| 72 | + |
| 73 | + if NOISE_DISTRIBUTION in cur_mes_df: |
| 74 | + observables[obs_id_long][NOISE_DISTRIBUTION] = \ |
| 75 | + cur_mes_df[NOISE_DISTRIBUTION].values[0] |
| 76 | + else: |
| 77 | + observables[obs_id_long][NOISE_DISTRIBUTION] = NORMAL |
| 78 | + |
| 79 | + observable_df = pd.DataFrame(observables).transpose().reset_index() |
| 80 | + observable_df.rename(columns={"index": OBSERVABLE_ID, |
| 81 | + "name": OBSERVABLE_NAME, |
| 82 | + "formula": OBSERVABLE_FORMULA}, |
| 83 | + errors="raise", inplace=True) |
| 84 | + observable_df[OBSERVABLE_ID] = observable_df[OBSERVABLE_ID].apply( |
| 85 | + get_observable_id) |
| 86 | + observable_df.set_index([OBSERVABLE_ID], inplace=True) |
| 87 | + problem.observable_df = observable_df |
| 88 | + |
| 89 | + # remove observableParameters and noiseParameters from SBML file |
| 90 | + # noise and observable parameters and AssignmentRules have already been |
| 91 | + # removed |
| 92 | + sbml_model = problem.sbml_model |
| 93 | + placeholders = set() |
| 94 | + for k, v in observables.items(): |
| 95 | + placeholders |= get_placeholders( |
| 96 | + v['formula'], |
| 97 | + get_observable_id(k), |
| 98 | + 'observable') |
| 99 | + for k, v in sigmas.items(): |
| 100 | + placeholders |= get_placeholders( |
| 101 | + v, get_observable_id(k), 'noise') |
| 102 | + for placeholder in placeholders: |
| 103 | + ret = sbml_model.removeParameter(placeholder) |
| 104 | + if not ret: |
| 105 | + raise RuntimeError("Unknown problem when trying to remove " |
| 106 | + f"placeholder parameter {placeholder}.") |
| 107 | + |
| 108 | + # drop obsolete measurement columns |
| 109 | + if OBSERVABLE_TRANSFORMATION in measurement_df: |
| 110 | + measurement_df.drop(OBSERVABLE_TRANSFORMATION, axis=1, inplace=True) |
| 111 | + if NOISE_DISTRIBUTION in measurement_df: |
| 112 | + measurement_df.drop(NOISE_DISTRIBUTION, axis=1, inplace=True) |
| 113 | + |
| 114 | + if lint_problem(problem): |
| 115 | + raise RuntimeError("Unknown error converting PEtab problem to " |
| 116 | + "observable table based format.") |
0 commit comments