Skip to content

chapter-2/1-predict-class MobileNetV3Small #173

Open
@zoldaten

Description

@zoldaten

chapter ends with MobileNetV2 example. i extend a bit using MobileNetV3, as it is a bit fresher.
but perfomance results shows strange things.

def predict2(img_path):
    img = image.load_img(img_path, target_size=(224, 224))
    model = tf.keras.applications.**MobileNetV2**()
    img_array = image.img_to_array(img)
    img_batch = np.expand_dims(img_array, axis=0)
    img_preprocessed = preprocess_input(img_batch)
    prediction = model.predict(img_preprocessed)
    print(decode_predictions(prediction, top=3)[0])

%timeit -r 3 predict2(IMG_PATH) 

MobileNetV2 gives 912 ms ± 5.02 ms per loop

while as MobileNetV3 gives 1.04 s ± 19.9 ms per loop
from tensorflow.keras.applications import MobileNetV3Small

def predict3(img_path):
    img = image.load_img(img_path, target_size=(224, 224))
    model = tf.keras.applications.MobileNetV3Small()
    img_array = image.img_to_array(img)
    img_batch = np.expand_dims(img_array, axis=0)
    img_preprocessed = preprocess_input(img_batch)    
    prediction = model.predict(img_preprocessed)
    #print(prediction)
    print(decode_predictions(prediction, top=3)[0]) 
%timeit -r 3 predict3(IMG_PATH) 

very strange. MobileNetV3Small should be faster.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions