Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
135 changes: 135 additions & 0 deletions examples/unbalanced-partial/plot_regpath.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
# -*- coding: utf-8 -*-
"""
================================================================
Regularization path of l2-penalized unbalanced optimal transport
================================================================
This example illustrate the regularization path for 2D unbalanced
optimal transport. We present here both the fully relaxed case
and the semi-relaxed case.

[Chapel et al., 2021] Chapel, L., Flamary, R., Wu, H., Févotte, C.,
and Gasso, G. (2021). Unbalanced optimal transport through non-negative
penalized linear regression.
"""

# Author: Haoran Wu <haoran.wu@univ-ubs.fr>
# License: MIT License


import numpy as np
import matplotlib.pylab as pl
import ot

##############################################################################
# Generate data
# -------------

#%% parameters and data generation

n = 50 # nb samples

mu_s = np.array([-1, -1])
cov_s = np.array([[1, 0], [0, 1]])

mu_t = np.array([4, 4])
cov_t = np.array([[1, -.8], [-.8, 1]])

np.random.seed(0)
xs = ot.datasets.make_2D_samples_gauss(n, mu_s, cov_s)
xt = ot.datasets.make_2D_samples_gauss(n, mu_t, cov_t)

a, b = np.ones((n,)) / n, np.ones((n,)) / n # uniform distribution on samples

# loss matrix
M = ot.dist(xs, xt)
M /= M.max()

##############################################################################
# Plot data
# ---------

#%% plot 2 distribution samples

pl.figure(1)
pl.scatter(xs[:, 0], xs[:, 1], c='C0', label='Source')
pl.scatter(xt[:, 0], xt[:, 1], c='C1', label='Target')
pl.legend(loc=2)
pl.title('Source and target distributions')
pl.show()

##############################################################################
# Compute semi-relaxed and fully relaxed regularization paths
# -----------

#%%
final_gamma = 1e-8
t, t_list, g_list = ot.regpath.regularization_path(a, b, M, reg=final_gamma,
semi_relaxed=False)
t2, t_list2, g_list2 = ot.regpath.regularization_path(a, b, M, reg=final_gamma,
semi_relaxed=True)


##############################################################################
# Plot the regularization path
# ----------------

#%% fully relaxed l2-penalized UOT

pl.figure(2)
selected_gamma = [2e-1, 1e-1, 5e-2, 1e-3]
for p in range(4):
tp = ot.regpath.compute_transport_plan(selected_gamma[p], g_list,
t_list)
P = tp.reshape((n, n))
pl.subplot(2, 2, p + 1)
if P.sum() > 0:
P = P / P.max()
for i in range(n):
for j in range(n):
if P[i, j] > 0:
pl.plot([xs[i, 0], xt[j, 0]], [xs[i, 1], xt[j, 1]], color='C2',
alpha=P[i, j] * 0.3)
pl.scatter(xs[:, 0], xs[:, 1], c='C0', alpha=0.2)
pl.scatter(xt[:, 0], xt[:, 1], c='C1', alpha=0.2)
pl.scatter(xs[:, 0], xs[:, 1], c='C0', s=P.sum(1).ravel() * (1 + p) * 2,
label='Re-weighted source', alpha=1)
pl.scatter(xt[:, 0], xt[:, 1], c='C1', s=P.sum(0).ravel() * (1 + p) * 2,
label='Re-weighted target', alpha=1)
pl.plot([], [], color='C2', alpha=0.8, label='OT plan')
pl.title(r'$\ell_2$ UOT $\gamma$={}'.format(selected_gamma[p]),
fontsize=11)
if p < 2:
pl.xticks(())
pl.show()


##############################################################################
# Plot the semi-relaxed regularization path
# -------------------

#%% semi-relaxed l2-penalized UOT

pl.figure(3)
selected_gamma = [10, 1, 1e-1, 1e-2]
for p in range(4):
tp = ot.regpath.compute_transport_plan(selected_gamma[p], g_list2,
t_list2)
P = tp.reshape((n, n))
pl.subplot(2, 2, p + 1)
if P.sum() > 0:
P = P / P.max()
for i in range(n):
for j in range(n):
if P[i, j] > 0:
pl.plot([xs[i, 0], xt[j, 0]], [xs[i, 1], xt[j, 1]], color='C2',
alpha=P[i, j] * 0.3)
pl.scatter(xs[:, 0], xs[:, 1], c='C0', alpha=0.2)
pl.scatter(xt[:, 0], xt[:, 1], c='C1', alpha=1, label='Target marginal')
pl.scatter(xs[:, 0], xs[:, 1], c='C0', s=P.sum(1).ravel() * 2 * (1 + p),
label='Source marginal', alpha=1)
pl.plot([], [], color='C2', alpha=0.8, label='OT plan')
pl.title(r'Semi-relaxed $l_2$ UOT $\gamma$={}'.format(selected_gamma[p]),
fontsize=11)
if p < 2:
pl.xticks(())
pl.show()
3 changes: 2 additions & 1 deletion ot/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@
from . import unbalanced
from . import partial
from . import backend
from . import regpath

# OT functions
from .lp import emd, emd2, emd_1d, emd2_1d, wasserstein_1d
Expand All @@ -54,4 +55,4 @@
'dist', 'unif', 'barycenter', 'sinkhorn_lpl1_mm', 'da', 'optim',
'sinkhorn_unbalanced', 'barycenter_unbalanced',
'sinkhorn_unbalanced2', 'sliced_wasserstein_distance',
'smooth', 'stochastic', 'unbalanced', 'partial']
'smooth', 'stochastic', 'unbalanced', 'partial', 'regpath']
Loading