Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions RELEASES.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,9 @@
- Fix bug in instantiating an `autograd` function `ValFunction` (Issue #337,
PR #338)
- Fix POT ABI compatibility with old and new numpy (Issue #346, PR #349)
- Fix bug where gromov_wasserstein2 does not perform backpropagation with CUDA
tensors (Issue #351, PR #352)


## 0.8.1.0
*December 2021*
Expand Down
12 changes: 8 additions & 4 deletions ot/gromov.py
Original file line number Diff line number Diff line change
Expand Up @@ -546,8 +546,10 @@ def df(G):
gw = log_gw['gw_dist']

if loss_fun == 'square_loss':
gC1 = nx.from_numpy(2 * C1 * (p[:, None] * p[None, :]) - 2 * T.dot(C2).dot(T.T))
gC2 = nx.from_numpy(2 * C2 * (q[:, None] * q[None, :]) - 2 * T.T.dot(C1).dot(T))
gC1 = 2 * C1 * (p[:, None] * p[None, :]) - 2 * T.dot(C2).dot(T.T)
gC2 = 2 * C2 * (q[:, None] * q[None, :]) - 2 * T.T.dot(C1).dot(T)
gC1 = nx.from_numpy(gC1, type_as=C10)
gC2 = nx.from_numpy(gC2, type_as=C10)
gw = nx.set_gradients(gw, (p0, q0, C10, C20),
(log_gw['u'], log_gw['v'], gC1, gC2))

Expand Down Expand Up @@ -786,8 +788,10 @@ def df(G):
log_fgw['T'] = T0

if loss_fun == 'square_loss':
gC1 = nx.from_numpy(2 * C1 * (p[:, None] * p[None, :]) - 2 * T.dot(C2).dot(T.T))
gC2 = nx.from_numpy(2 * C2 * (q[:, None] * q[None, :]) - 2 * T.T.dot(C1).dot(T))
gC1 = 2 * C1 * (p[:, None] * p[None, :]) - 2 * T.dot(C2).dot(T.T)
gC2 = 2 * C2 * (q[:, None] * q[None, :]) - 2 * T.T.dot(C1).dot(T)
gC1 = nx.from_numpy(gC1, type_as=C10)
gC2 = nx.from_numpy(gC2, type_as=C10)
fgw_dist = nx.set_gradients(fgw_dist, (p0, q0, C10, C20, M0),
(log_fgw['u'], log_fgw['v'], alpha * gC1, alpha * gC2, (1 - alpha) * T0))

Expand Down
60 changes: 35 additions & 25 deletions test/test_gromov.py
Original file line number Diff line number Diff line change
Expand Up @@ -181,19 +181,24 @@ def test_gromov2_gradients():

if torch:

p1 = torch.tensor(p, requires_grad=True)
q1 = torch.tensor(q, requires_grad=True)
C11 = torch.tensor(C1, requires_grad=True)
C12 = torch.tensor(C2, requires_grad=True)
devices = [torch.device("cpu")]
if torch.cuda.is_available():
devices.append(torch.device("cuda"))
for device in devices:
p1 = torch.tensor(p, requires_grad=True, device=device)
q1 = torch.tensor(q, requires_grad=True, device=device)
C11 = torch.tensor(C1, requires_grad=True, device=device)
C12 = torch.tensor(C2, requires_grad=True, device=device)

val = ot.gromov_wasserstein2(C11, C12, p1, q1)
val = ot.gromov_wasserstein2(C11, C12, p1, q1)

val.backward()
val.backward()

assert q1.shape == q1.grad.shape
assert p1.shape == p1.grad.shape
assert C11.shape == C11.grad.shape
assert C12.shape == C12.grad.shape
assert val.device == p1.device
assert q1.shape == q1.grad.shape
assert p1.shape == p1.grad.shape
assert C11.shape == C11.grad.shape
assert C12.shape == C12.grad.shape


@pytest.skip_backend("jax", reason="test very slow with jax backend")
Expand Down Expand Up @@ -636,21 +641,26 @@ def test_fgw2_gradients():

if torch:

p1 = torch.tensor(p, requires_grad=True)
q1 = torch.tensor(q, requires_grad=True)
C11 = torch.tensor(C1, requires_grad=True)
C12 = torch.tensor(C2, requires_grad=True)
M1 = torch.tensor(M, requires_grad=True)

val = ot.fused_gromov_wasserstein2(M1, C11, C12, p1, q1)

val.backward()

assert q1.shape == q1.grad.shape
assert p1.shape == p1.grad.shape
assert C11.shape == C11.grad.shape
assert C12.shape == C12.grad.shape
assert M1.shape == M1.grad.shape
devices = [torch.device("cpu")]
if torch.cuda.is_available():
devices.append(torch.device("cuda"))
for device in devices:
p1 = torch.tensor(p, requires_grad=True, device=device)
q1 = torch.tensor(q, requires_grad=True, device=device)
C11 = torch.tensor(C1, requires_grad=True, device=device)
C12 = torch.tensor(C2, requires_grad=True, device=device)
M1 = torch.tensor(M, requires_grad=True, device=device)

val = ot.fused_gromov_wasserstein2(M1, C11, C12, p1, q1)

val.backward()

assert val.device == p1.device
assert q1.shape == q1.grad.shape
assert p1.shape == p1.grad.shape
assert C11.shape == C11.grad.shape
assert C12.shape == C12.grad.shape
assert M1.shape == M1.grad.shape


def test_fgw_barycenter(nx):
Expand Down