Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions RELEASES.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,11 @@

- Added Generalized Wasserstein Barycenter solver + example (PR #372)

#### Closed issues

- Fixed an issue where we could not ask TorchBackend to place a random tensor on GPU
(Issue #371, PR #373)


## 0.8.2

Expand Down
18 changes: 14 additions & 4 deletions ot/backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -1507,15 +1507,19 @@ class TorchBackend(Backend):

def __init__(self):

self.rng_ = torch.Generator()
self.rng_ = torch.Generator("cpu")
self.rng_.seed()

self.__type_list__ = [torch.tensor(1, dtype=torch.float32),
torch.tensor(1, dtype=torch.float64)]

if torch.cuda.is_available():
self.rng_cuda_ = torch.Generator("cuda")
self.rng_cuda_.seed()
self.__type_list__.append(torch.tensor(1, dtype=torch.float32, device='cuda'))
self.__type_list__.append(torch.tensor(1, dtype=torch.float64, device='cuda'))
else:
self.rng_cuda_ = torch.Generator("cpu")

from torch.autograd import Function

Expand Down Expand Up @@ -1761,20 +1765,26 @@ def reshape(self, a, shape):
def seed(self, seed=None):
if isinstance(seed, int):
self.rng_.manual_seed(seed)
self.rng_cuda_.manual_seed(seed)
elif isinstance(seed, torch.Generator):
self.rng_ = seed
if self.device_type(seed) == "GPU":
self.rng_cuda_ = seed
else:
self.rng_ = seed
else:
raise ValueError("Non compatible seed : {}".format(seed))

def rand(self, *size, type_as=None):
if type_as is not None:
return torch.rand(size=size, generator=self.rng_, dtype=type_as.dtype, device=type_as.device)
generator = self.rng_cuda_ if self.device_type(type_as) == "GPU" else self.rng_
return torch.rand(size=size, generator=generator, dtype=type_as.dtype, device=type_as.device)
else:
return torch.rand(size=size, generator=self.rng_)

def randn(self, *size, type_as=None):
if type_as is not None:
return torch.randn(size=size, dtype=type_as.dtype, generator=self.rng_, device=type_as.device)
generator = self.rng_cuda_ if self.device_type(type_as) == "GPU" else self.rng_
return torch.randn(size=size, dtype=type_as.dtype, generator=generator, device=type_as.device)
else:
return torch.randn(size=size, generator=self.rng_)

Expand Down