Skip to content

[MRG] make alpha parameter in FGW diferentiable #463

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Apr 24, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions RELEASES.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,8 @@

#### New features

- Make alpha parameter in Fused Gromov Wasserstein differentiable (PR #463)

#### Closed issues

- Fix circleci-redirector action and codecov (PR #460)
Expand Down
6 changes: 5 additions & 1 deletion ot/backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -1694,10 +1694,12 @@ def backward(ctx, grad_output):
self.ValFunction = ValFunction

def _to_numpy(self, a):
if isinstance(a, float) or isinstance(a, int) or isinstance(a, np.ndarray):
return np.array(a)
return a.cpu().detach().numpy()

def _from_numpy(self, a, type_as=None):
if isinstance(a, float):
if isinstance(a, float) or isinstance(a, int):
a = np.array(a)
if type_as is None:
return torch.from_numpy(a)
Expand Down Expand Up @@ -2501,6 +2503,8 @@ def __init__(self):
)

def _to_numpy(self, a):
if isinstance(a, float) or isinstance(a, int) or isinstance(a, np.ndarray):
return np.array(a)
return a.numpy()

def _from_numpy(self, a, type_as=None):
Expand Down
20 changes: 15 additions & 5 deletions ot/gromov/_gw.py
Original file line number Diff line number Diff line change
Expand Up @@ -370,7 +370,7 @@ def fused_gromov_wasserstein(M, C1, C2, p, q, loss_fun='square_loss', symmetric=
Information and Inference: A Journal of the IMA, 8(4), 757-787.
"""
p, q = list_to_array(p, q)
p0, q0, C10, C20, M0 = p, q, C1, C2, M
p0, q0, C10, C20, M0, alpha0 = p, q, C1, C2, M, alpha
if G0 is None:
nx = get_backend(p0, q0, C10, C20, M0)
else:
Expand All @@ -382,6 +382,7 @@ def fused_gromov_wasserstein(M, C1, C2, p, q, loss_fun='square_loss', symmetric=
C1 = nx.to_numpy(C10)
C2 = nx.to_numpy(C20)
M = nx.to_numpy(M0)
alpha = nx.to_numpy(alpha0)

if symmetric is None:
symmetric = np.allclose(C1, C1.T, atol=1e-10) and np.allclose(C2, C2.T, atol=1e-10)
Expand Down Expand Up @@ -535,10 +536,19 @@ def fused_gromov_wasserstein2(M, C1, C2, p, q, loss_fun='square_loss', symmetric
if loss_fun == 'square_loss':
gC1 = 2 * C1 * nx.outer(p, p) - 2 * nx.dot(T, nx.dot(C2, T.T))
gC2 = 2 * C2 * nx.outer(q, q) - 2 * nx.dot(T.T, nx.dot(C1, T))
fgw_dist = nx.set_gradients(fgw_dist, (p, q, C1, C2, M),
(log_fgw['u'] - nx.mean(log_fgw['u']),
log_fgw['v'] - nx.mean(log_fgw['v']),
alpha * gC1, alpha * gC2, (1 - alpha) * T))
if isinstance(alpha, int) or isinstance(alpha, float):
fgw_dist = nx.set_gradients(fgw_dist, (p, q, C1, C2, M),
(log_fgw['u'] - nx.mean(log_fgw['u']),
log_fgw['v'] - nx.mean(log_fgw['v']),
alpha * gC1, alpha * gC2, (1 - alpha) * T))
else:
lin_term = nx.sum(T * M)
gw_term = (fgw_dist - (1 - alpha) * lin_term) / alpha
fgw_dist = nx.set_gradients(fgw_dist, (p, q, C1, C2, M, alpha),
(log_fgw['u'] - nx.mean(log_fgw['u']),
log_fgw['v'] - nx.mean(log_fgw['v']),
alpha * gC1, alpha * gC2, (1 - alpha) * T,
gw_term - lin_term))

if log:
return fgw_dist, log_fgw
Expand Down
27 changes: 27 additions & 0 deletions test/test_gromov.py
Original file line number Diff line number Diff line change
Expand Up @@ -209,6 +209,8 @@ def test_gromov2_gradients():
if torch.cuda.is_available():
devices.append(torch.device("cuda"))
for device in devices:

# classical gradients
p1 = torch.tensor(p, requires_grad=True, device=device)
q1 = torch.tensor(q, requires_grad=True, device=device)
C11 = torch.tensor(C1, requires_grad=True, device=device)
Expand All @@ -226,6 +228,12 @@ def test_gromov2_gradients():
assert C12.shape == C12.grad.shape

# Test with armijo line-search
# classical gradients
p1 = torch.tensor(p, requires_grad=True, device=device)
q1 = torch.tensor(q, requires_grad=True, device=device)
C11 = torch.tensor(C1, requires_grad=True, device=device)
C12 = torch.tensor(C2, requires_grad=True, device=device)

q1.grad = None
p1.grad = None
C11.grad = None
Expand Down Expand Up @@ -830,6 +838,25 @@ def test_fgw2_gradients():
assert C12.shape == C12.grad.shape
assert M1.shape == M1.grad.shape

# full gradients with alpha
p1 = torch.tensor(p, requires_grad=True, device=device)
q1 = torch.tensor(q, requires_grad=True, device=device)
C11 = torch.tensor(C1, requires_grad=True, device=device)
C12 = torch.tensor(C2, requires_grad=True, device=device)
M1 = torch.tensor(M, requires_grad=True, device=device)
alpha = torch.tensor(0.5, requires_grad=True, device=device)

val = ot.fused_gromov_wasserstein2(M1, C11, C12, p1, q1, alpha=alpha)

val.backward()

assert val.device == p1.device
assert q1.shape == q1.grad.shape
assert p1.shape == p1.grad.shape
assert C11.shape == C11.grad.shape
assert C12.shape == C12.grad.shape
assert alpha.shape == alpha.grad.shape


def test_fgw_helper_backend(nx):
n_samples = 20 # nb samples
Expand Down