Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -370,4 +370,6 @@ distances between Gaussian distributions](https://hal.science/hal-03197398v2/fil

[68] Chowdhury, S., Miller, D., & Needham, T. (2021). [Quantized gromov-wasserstein](https://link.springer.com/chapter/10.1007/978-3-030-86523-8_49). ECML PKDD 2021. Springer International Publishing.

[69] Delon, J., & Desolneux, A. (2020). [A Wasserstein-type distance in the space of Gaussian mixture models](https://epubs.siam.org/doi/abs/10.1137/19M1301047). SIAM Journal on Imaging Sciences, 13(2), 936-970.
[69] Delon, J., & Desolneux, A. (2020). [A Wasserstein-type distance in the space of Gaussian mixture models](https://epubs.siam.org/doi/abs/10.1137/19M1301047). SIAM Journal on Imaging Sciences, 13(2), 936-970.

[70] Séjourné, T., Vialard, F. X., & Peyré, G. (2022). [Faster Unbalanced Optimal Transport: Translation Invariant Sinkhorn and 1-D Frank-Wolfe](https://proceedings.mlr.press/v151/sejourne22a.html). In International Conference on Artificial Intelligence and Statistics (pp. 4995-5021). PMLR.
101 changes: 101 additions & 0 deletions examples/unbalanced-partial/plot_conv_sinkhorn_ti.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
# -*- coding: utf-8 -*-
"""
===============================================================
Translation Invariant Sinkhorn for Unbalanced Optimal Transport
===============================================================

This examples illustrates the better convergence of the translation
invariance Sinkhorn algorithm proposed in [70] compared to the classical
Sinkhorn algorithm.

[70] Séjourné, T., Vialard, F. X., & Peyré, G. (2022).
Faster unbalanced optimal transport: Translation invariant sinkhorn and 1-d frank-wolfe.
In International Conference on Artificial Intelligence and Statistics (pp. 4995-5021). PMLR.

"""

# Author: Clément Bonet <clement.bonet@ensae.fr>
# License: MIT License

import numpy as np
import matplotlib.pylab as pl
import ot

##############################################################################
# Setting parameters
# -------------

# %% parameters

n_iter = 50 # nb iters
n = 40 # nb samples

num_iter_max = 100
n_noise = 10

reg = 0.005
reg_m_kl = 0.05

mu_s = np.array([-1, -1])
cov_s = np.array([[1, 0], [0, 1]])

mu_t = np.array([4, 4])
cov_t = np.array([[1, -.8], [-.8, 1]])


##############################################################################
# Compute entropic kl-regularized UOT with Sinkhorn and Translation Invariant Sinkhorn
# -----------

err_sinkhorn_uot = np.empty((n_iter, num_iter_max))
err_sinkhorn_uot_ti = np.empty((n_iter, num_iter_max))


for seed in range(n_iter):
np.random.seed(seed)
xs = ot.datasets.make_2D_samples_gauss(n, mu_s, cov_s)
xt = ot.datasets.make_2D_samples_gauss(n, mu_t, cov_t)

xs = np.concatenate((xs, ((np.random.rand(n_noise, 2) - 4))), axis=0)
xt = np.concatenate((xt, ((np.random.rand(n_noise, 2) + 6))), axis=0)

n = n + n_noise

a, b = np.ones((n,)) / n, np.ones((n,)) / n # uniform distribution on samples

# loss matrix
M = ot.dist(xs, xt)
M /= M.max()

entropic_kl_uot, log_uot = ot.unbalanced.sinkhorn_unbalanced(a, b, M, reg, reg_m_kl, reg_type="kl", log=True, numItermax=num_iter_max, stopThr=0)
entropic_kl_uot_ti, log_uot_ti = ot.unbalanced.sinkhorn_unbalanced(a, b, M, reg, reg_m_kl, reg_type="kl",
method="sinkhorn_translation_invariant", log=True,
numItermax=num_iter_max, stopThr=0)

err_sinkhorn_uot[seed] = log_uot["err"]
err_sinkhorn_uot_ti[seed] = log_uot_ti["err"]

##############################################################################
# Plot the results
# ----------------

mean_sinkh = np.mean(err_sinkhorn_uot, axis=0)
std_sinkh = np.std(err_sinkhorn_uot, axis=0)

mean_sinkh_ti = np.mean(err_sinkhorn_uot_ti, axis=0)
std_sinkh_ti = np.std(err_sinkhorn_uot_ti, axis=0)

absc = list(range(num_iter_max))

pl.plot(absc, mean_sinkh, label="Sinkhorn")
pl.fill_between(absc, mean_sinkh - 2 * std_sinkh, mean_sinkh + 2 * std_sinkh, alpha=0.5)

pl.plot(absc, mean_sinkh_ti, label="Translation Invariant Sinkhorn")
pl.fill_between(absc, mean_sinkh_ti - 2 * std_sinkh_ti, mean_sinkh_ti + 2 * std_sinkh_ti, alpha=0.5)

pl.yscale("log")
pl.legend()
pl.xlabel("Number of Iterations")
pl.ylabel(r"$\|u-v\|_\infty$")
pl.grid(True)
pl.show()
2 changes: 1 addition & 1 deletion examples/unbalanced-partial/plot_unbalanced_OT.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,7 @@
reg_m_l2 = 5
mass = 0.7

entropic_kl_uot = ot.unbalanced.sinkhorn_unbalanced(a, b, M, reg, reg_m_kl)
entropic_kl_uot = ot.unbalanced.sinkhorn_unbalanced(a, b, M, reg, reg_m_kl, reg_type="kl")
kl_uot = ot.unbalanced.mm_unbalanced(a, b, M, reg_m_kl, div='kl')
l2_uot = ot.unbalanced.mm_unbalanced(a, b, M, reg_m_l2, div='l2')
partial_ot = ot.partial.partial_wasserstein(a, b, M, m=mass)
Expand Down
4 changes: 3 additions & 1 deletion ot/unbalanced/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
from ._sinkhorn import (sinkhorn_knopp_unbalanced,
sinkhorn_unbalanced,
sinkhorn_stabilized_unbalanced,
sinkhorn_unbalanced_translation_invariant,
sinkhorn_unbalanced2,
barycenter_unbalanced_sinkhorn,
barycenter_unbalanced_stabilized,
Expand All @@ -22,6 +23,7 @@
from ._lbfgs import (lbfgsb_unbalanced, lbfgsb_unbalanced2)

__all__ = ['sinkhorn_knopp_unbalanced', 'sinkhorn_unbalanced', 'sinkhorn_stabilized_unbalanced',
'sinkhorn_unbalanced2', 'barycenter_unbalanced_sinkhorn', 'barycenter_unbalanced_stabilized',
'sinkhorn_unbalanced_translation_invariant', 'sinkhorn_unbalanced2',
'barycenter_unbalanced_sinkhorn', 'barycenter_unbalanced_stabilized',
'barycenter_unbalanced', 'mm_unbalanced', 'mm_unbalanced2', '_get_loss_unbalanced',
'lbfgsb_unbalanced', 'lbfgsb_unbalanced2']
Loading
Loading