Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions cobra/preprocessing/preprocessor.py
Original file line number Diff line number Diff line change
Expand Up @@ -293,6 +293,9 @@ def transform(self, data: pd.DataFrame, continuous_vars: list,

start = time.time()

# Ensure to operate on separate copy of data
data = data.copy()

if not self._is_fitted:
msg = ("This {} instance is not fitted yet. Call 'fit' with "
"appropriate arguments before using this method.")
Expand Down
32 changes: 32 additions & 0 deletions tests/preprocessing/test_preprocessor.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,11 @@

from contextlib import contextmanager
from typing import Any
from unittest.mock import MagicMock
import pytest
import numpy as np
import pandas as pd
from pytest_mock import MockerFixture

from cobra.preprocessing.preprocessor import PreProcessor

Expand Down Expand Up @@ -146,3 +148,33 @@ def test_get_variable_list(self, continuous_vars: list,
discrete_vars)

assert actual == expected

@staticmethod
def mock_transform(df: pd.DataFrame, args):
"""Mock the transform method."""
df["new_column"] = "Hello World"
return df

def test_mutable_train_data_fit_transform(self, mocker: MockerFixture):
"""Test if the train_data input is not changed when performing fit_transform."""
train_data = pd.DataFrame([[1, "2", 3], [10, "20", 30], [100, "200", 300]], columns=["foo", "bar", "baz"])
preprocessor = PreProcessor.from_params(
model_type="classification",
n_bins=10,
weight= 0.8
)
preprocessor._categorical_data_processor = MagicMock()
preprocessor._categorical_data_processor.transform = self.mock_transform
preprocessor._discretizer = MagicMock()
preprocessor._discretizer.transform = self.mock_transform
preprocessor._target_encoder = MagicMock()
preprocessor._target_encoder.transform = self.mock_transform

result = preprocessor.fit_transform(
train_data,
continuous_vars=["foo"],
discrete_vars=["bar"],
target_column_name=["baz"]
)
assert "new_column" not in train_data.columns
assert "new_column" in result.columns