Skip to content

Rachit-1997/imdb-movie-analysis-python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

8 Commits
Β 
Β 
Β 
Β 

Repository files navigation

🎬 IMDB Movie Analysis Project

This project is a data analysis portfolio project where I explored and analyzed IMDB movie data using Python. The dataset contains information about movies, their ratings, revenue, genres, directors, and other attributes.

πŸ“‚ Project Structure

IMDB-movie-project/
β”‚
β”œβ”€β”€ data/
β”‚ └── IMDB-Movie-Data.csv
β”‚
β”œβ”€β”€ images/
β”‚ β”œβ”€β”€ Screenshot_1.png
β”‚ β”œβ”€β”€ Screenshot_2.png
β”‚ β”œβ”€β”€ Screenshot_3.png
β”‚ └── Screenshot_4.png
β”‚
β”œβ”€β”€ notebook/
β”‚ └── IMDB_movie_project.ipynb
β”‚
└── README.md

πŸš€ Tech Stack

  • Python 🐍
  • Jupyter Notebook
  • Libraries Used:
    • Pandas
    • Numpy
    • Matplotlib
    • Seaborn

πŸ“Š Key Steps in the Project

  • Data Loading & Cleaning

    • Imported dataset into Pandas DataFrame
    • Checked for missing values, duplicates, and data consistency
  • Exploratory Data Analysis (EDA)

    • Summary statistics
    • Genre distribution
    • Correlation between rating, votes, and revenue
  • Data Visualization

    • Bar plots, histograms, heatmaps, and scatter plots
    • Insights on movie popularity, genre trends, and revenue patterns
  • Key Insights

    • Higher rated movies often generate higher revenue
    • Action and Adventure genres dominate in revenue
    • Directors with consistent high ratings attract more votes
    • Strong correlation between vote count and revenue

πŸ“Œ How to Run the Project

  1. Clone the repository:

    git clone https://github.com/your-username/IMDB-movie-project.git
    cd IMDB-movie-project
    
  2. Install required libraries: pip install pandas numpy matplotlib seaborn jupyter

  3. Open the notebook: jupyter notebook notebook/IMDB_movie_project.ipynb

πŸ” Result & Learning

  • Learned how to perform end-to-end EDA on real-world data
  • Improved skills in Python, Pandas, and Seaborn visualizations
  • Gained insights into movie trends and audience preferences
  • This project showcases analytical and visualization skills for data analyst roles

πŸ” About Me I am a fresher aspiring for data analyst roles with skills in:

  • Python
  • SQL
  • Excel
  • Power BI
  • Data Visualization
  • Statistical Analysis -Statistical Analysis

About

Exploratory Data Analysis on IMDB dataset using Python, Pandas, and Seaborn.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published