A production-grade MCP (Model Context Protocol) server that indexes code repositories into PostgreSQL with pgvector for semantic search, designed specifically for AI coding assistants.
The Codebase MCP Server provides semantic code search capabilities through a focused, local-first architecture. It enables AI assistants to understand and navigate codebases efficiently by combining tree-sitter AST parsing with vector embeddings.
- Semantic Code Search: Natural language queries across indexed repositories
- Repository Indexing: Fast scanning and chunking with tree-sitter parsers
- Task Management: Development task tracking with git integration
- MCP Protocol: Six focused tools via Server-Sent Events (SSE) and stdio (JSON-RPC)
- Performance Guaranteed: 60-second indexing for 10K files, 500ms p95 search latency
- Production Ready: Comprehensive error handling, structured logging, type safety
- search_code: Semantic search across indexed code
- index_repository: Index a repository for searching
- get_task: Retrieve a specific development task
- list_tasks: List tasks with filtering options
- create_task: Create a new development task
- update_task: Update task status with git integration
# Create database
createdb codebase_mcp
# Initialize schema
psql -d codebase_mcp -f db/init_tables.sql
uv sync
Edit ~/Library/Application Support/Claude/claude_desktop_config.json
:
{
"mcpServers": {
"codebase-mcp": {
"command": "uv",
"args": [
"run",
"--with",
"anthropic-mcp",
"python",
"/absolute/path/to/codebase-mcp/src/mcp/mcp_stdio_server_v3.py"
]
}
}
}
Important: Use absolute paths!
ollama serve
ollama pull nomic-embed-text
# Test database and tools
uv run python tests/test_tool_handlers.py
# Test repository indexing
uv run python tests/test_embeddings.py
Tool | Status | Description |
---|---|---|
create_task |
✅ Working | Create development tasks with planning references |
get_task |
✅ Working | Retrieve task by ID |
list_tasks |
✅ Working | List tasks with filters (status, branch) |
update_task |
✅ Working | Update tasks with git tracking (branch, commit) |
index_repository |
✅ Working | Index code repositories with semantic chunking |
search_code |
✅ Working | Semantic code search with pgvector similarity |
- ✅ Parameter passing architecture (Pydantic models)
- ✅ MCP schema mismatches (status enums, missing parameters)
- ✅ Timezone/datetime compatibility (PostgreSQL)
- ✅ Binary file filtering (images, cache dirs)
✅ Task Management: 7/7 tests passed
✅ Repository Indexing: 2 files indexed, 6 chunks created
✅ Embeddings: 100% coverage (768-dim vectors)
✅ Database: Connection pooling, async operations working
In Claude Desktop:
Create a task called "Implement user authentication" with description "Add JWT-based authentication to the API"
Response:
{
"id": "550e8400-e29b-41d4-a716-446655440000",
"title": "Implement user authentication",
"description": "Add JWT-based authentication to the API",
"status": "need to be done",
"created_at": "2025-10-06T21:30:00",
"planning_references": []
}
Index the repository at /Users/username/projects/myapp
Response:
{
"repository_id": "abc123...",
"files_indexed": 234,
"chunks_created": 1456,
"duration_seconds": 12.5,
"status": "success"
}
Search for "authentication middleware" in Python files
Response:
{
"results": [
{
"file_path": "src/middleware/auth.py",
"content": "def authenticate_request(request):\n ...",
"start_line": 45,
"similarity_score": 0.92
}
],
"total_count": 5,
"latency_ms": 250
}
Update task abc123 to status "in-progress" and link it to branch "feature/auth"
Response:
{
"id": "abc123...",
"status": "in-progress",
"branches": ["feature/auth"],
"commits": []
}
Claude Desktop ↔ MCP Server ↔ Tool Handlers ↔ Services ↔ PostgreSQL
↓
Ollama (embeddings)
See ARCHITECTURE.md for detailed component diagrams.
- docs/status/MCP_SERVER_STATUS.md - Current status, test results, configuration
- docs/status/SESSION_HANDOFF.md - Recent problems solved, current working state
- docs/guides/SETUP_GUIDE.md - Complete setup instructions with troubleshooting
- docs/ARCHITECTURE.md - System architecture and data flow
- CLAUDE.md - Specify workflow for AI-assisted development
11 tables with pgvector for semantic search:
Core Tables:
repositories
- Indexed repositoriescode_files
- Source files with metadatacode_chunks
- Semantic chunks with embeddings (vector(768))tasks
- Development tasks with git trackingtask_status_history
- Audit trail
See docs/ARCHITECTURE.md for complete schema documentation.
- Server: Python 3.13+, MCP SDK, FastAPI patterns
- Database: PostgreSQL 14+ with pgvector extension
- Embeddings: Ollama (nomic-embed-text, 768 dimensions)
- ORM: SQLAlchemy 2.0 (async), Pydantic for validation
- Type Safety: Full mypy --strict compliance
# Tool handlers
uv run python tests/test_tool_handlers.py
# Repository indexing
uv run python tests/test_embeddings.py
# Unit tests
uv run pytest tests/ -v
src/
├── mcp/
│ ├── mcp_stdio_server_v3.py # MCP server entry point
│ └── tools/ # Tool handlers
│ ├── tasks.py # Task management
│ ├── indexing.py # Repository indexing
│ └── search.py # Semantic search
├── services/ # Business logic layer
│ ├── tasks.py # Task CRUD + git tracking
│ ├── indexer.py # Indexing orchestration
│ ├── scanner.py # File discovery
│ ├── chunker.py # AST-based chunking
│ ├── embedder.py # Ollama integration
│ └── searcher.py # pgvector similarity search
└── models/ # Database models + Pydantic schemas
├── task.py # Task, TaskCreate, TaskUpdate
├── code_chunk.py # CodeChunk
└── ...
- Python 3.11+ (3.13 compatible)
- PostgreSQL 14+ with pgvector extension
- Ollama for embedding generation
- 4GB+ RAM recommended
- SSD storage for optimal performance
# Install PostgreSQL 14+
# macOS
brew install postgresql@14
brew services start postgresql@14
# Ubuntu/Debian
sudo apt-get update
sudo apt-get install postgresql-14 postgresql-contrib-14
# Install pgvector extension
# macOS
brew install pgvector
# Ubuntu/Debian
sudo apt install postgresql-14-pgvector
# Enable pgvector in your database
psql -U postgres -c "CREATE EXTENSION IF NOT EXISTS vector;"
# Install Ollama
# macOS
brew install ollama
# Linux
curl -fsSL https://ollama.com/install.sh | sh
# Start Ollama service
ollama serve
# Pull required embedding model
ollama pull nomic-embed-text
git clone https://github.com/cliffclarke/codebase-mcp.git
cd codebase-mcp
# Create virtual environment
python3.11 -m venv .venv
# Activate virtual environment
# macOS/Linux
source .venv/bin/activate
# Windows
.venv\Scripts\activate
# Install production dependencies
pip install -r requirements.txt
# For development (includes testing and linting tools)
pip install -r requirements-dev.txt
# Copy example environment file
cp .env.example .env
# Edit .env with your configuration
nano .env
Environment Variables:
# Database Configuration
DATABASE_URL=postgresql+asyncpg://user:password@localhost:5432/codebase_mcp
# Ollama Configuration
OLLAMA_BASE_URL=http://localhost:11434
OLLAMA_EMBEDDING_MODEL=embeddinggemma
# Performance Tuning
EMBEDDING_BATCH_SIZE=50 # Batch size for embedding generation
MAX_CONCURRENT_REQUESTS=10 # Max parallel Ollama requests
# Logging
LOG_LEVEL=INFO # DEBUG, INFO, WARNING, ERROR
LOG_FILE=/tmp/codebase-mcp.log # Log file location
# Connect to PostgreSQL
psql -U postgres
# Create database
CREATE DATABASE codebase_mcp;
# Enable pgvector extension
\c codebase_mcp
CREATE EXTENSION IF NOT EXISTS vector;
\q
# Run database initialization script
python scripts/init_db.py
# Verify schema creation
alembic current
The initialization script will:
- Create all required tables (repositories, files, chunks, tasks)
- Set up vector indexes for similarity search
- Configure connection pooling
- Apply all database migrations
# Check database connectivity
python -c "from src.database import Database; import asyncio; asyncio.run(Database.create_pool())"
# Run migration status check
alembic current
During development, you may need to reset your database. See DATABASE_RESET.md for three reset options:
- scripts/clear_data.sh - Clear all data, keep schema (fastest, no restart needed)
- scripts/reset_database.sh - Drop and recreate all tables (recommended for schema changes)
- scripts/nuclear_reset.sh - Drop entire database (requires Claude Desktop restart)
# Quick data wipe (keeps schema)
./scripts/clear_data.sh
# Full table reset (recommended)
./scripts/reset_database.sh
# Nuclear option (drops database)
./scripts/nuclear_reset.sh
# Start with auto-reload
uvicorn src.main:app --reload --host 127.0.0.1 --port 3000
# With custom log level
LOG_LEVEL=DEBUG uvicorn src.main:app --reload
# Start production server
uvicorn src.main:app --host 0.0.0.0 --port 3000 --workers 4
# With gunicorn (recommended for production)
gunicorn src.main:app -w 4 -k uvicorn.workers.UvicornWorker --bind 0.0.0.0:3000
The MCP server supports stdio transport for CLI clients via JSON-RPC 2.0 over stdin/stdout. This is ideal for command-line tools and scripted interactions.
# Start stdio server (reads JSON-RPC from stdin)
python -m src.mcp.stdio_server
# Echo a single request
echo '{"jsonrpc":"2.0","id":1,"method":"list_tasks","params":{"limit":5}}' | python -m src.mcp.stdio_server
# Pipe requests from a file (one JSON-RPC request per line)
cat requests.jsonl | python -m src.mcp.stdio_server
# Interactive mode (type JSON-RPC requests manually)
python -m src.mcp.stdio_server
{"jsonrpc":"2.0","id":1,"method":"get_task","params":{"task_id":"..."}}
JSON-RPC 2.0 Request Format:
{
"jsonrpc": "2.0",
"id": 1,
"method": "search_code",
"params": {
"query": "async def",
"limit": 10
}
}
JSON-RPC 2.0 Response Format:
{
"jsonrpc": "2.0",
"id": 1,
"result": {
"results": [...],
"total_count": 42,
"latency_ms": 250
}
}
Available Methods:
search_code
- Semantic code searchindex_repository
- Index a repositoryget_task
- Get task by IDlist_tasks
- List tasks with filterscreate_task
- Create new taskupdate_task
- Update task status
Logging:
All logs go to /tmp/codebase-mcp.log
(configurable via LOG_FILE
env var). No stdout/stderr pollution - only JSON-RPC protocol messages on stdout.
# Check server health
curl http://localhost:3000/health
# Expected response:
{
"status": "healthy",
"database": "connected",
"ollama": "connected",
"version": "0.1.0"
}
# Via MCP protocol
{
"tool": "index_repository",
"arguments": {
"path": "/path/to/your/repo",
"name": "My Project",
"force_reindex": false
}
}
# Response
{
"repository_id": "uuid-here",
"files_indexed": 150,
"chunks_created": 1200,
"duration_seconds": 45.3,
"status": "success"
}
# Search for authentication logic
{
"tool": "search_code",
"arguments": {
"query": "user authentication password validation",
"limit": 10,
"file_type": "py"
}
}
# Response includes ranked code chunks with context
{
"results": [...],
"total_count": 25,
"latency_ms": 230
}
# Create a task
{
"tool": "create_task",
"arguments": {
"title": "Implement rate limiting",
"description": "Add rate limiting to API endpoints",
"planning_references": ["specs/rate-limiting.md"]
}
}
# Update task with git integration
{
"tool": "update_task",
"arguments": {
"task_id": "task-uuid",
"status": "complete",
"branch": "feature/rate-limiting",
"commit": "abc123..."
}
}
┌─────────────────────────────────────────────────┐
│ MCP Client (AI) │
└─────────────────┬───────────────────────────────┘
│ SSE Protocol
┌─────────────────▼───────────────────────────────┐
│ MCP Server Layer │
│ ┌──────────────────────────────────────────┐ │
│ │ Tool Registration & Routing │ │
│ └──────────────────────────────────────────┘ │
│ ┌──────────────────────────────────────────┐ │
│ │ Request/Response Handling │ │
│ └──────────────────────────────────────────┘ │
└─────────────────┬───────────────────────────────┘
│
┌─────────────────▼───────────────────────────────┐
│ Service Layer │
│ ┌────────────┐ ┌────────────┐ ┌────────────┐ │
│ │ Indexer │ │ Searcher │ │Task Manager│ │
│ └──────┬─────┘ └──────┬─────┘ └──────┬─────┘ │
│ │ │ │ │
│ ┌──────▼──────────────▼──────────────▼──────┐ │
│ │ Repository Service │ │
│ └──────┬─────────────────────────────────────┘ │
│ │ │
│ ┌──────▼─────────────────────────────────────┐ │
│ │ Embedding Service (Ollama) │ │
│ └─────────────────────────────────────────────┘│
└─────────────────┬───────────────────────────────┘
│
┌─────────────────▼───────────────────────────────┐
│ Data Layer │
│ ┌──────────────────────────────────────────┐ │
│ │ PostgreSQL with pgvector │ │
│ │ ┌──────────┐ ┌──────────┐ ┌──────────┐ │ │
│ │ │Repository│ │ Files │ │ Chunks │ │ │
│ │ └──────────┘ └──────────┘ └──────────┘ │ │
│ │ ┌──────────┐ ┌──────────────────────┐ │ │
│ │ │ Tasks │ │ Vector Embeddings │ │ │
│ │ └──────────┘ └──────────────────────┘ │ │
│ └──────────────────────────────────────────┘ │
└──────────────────────────────────────────────────┘
- MCP Layer: Handles protocol compliance, tool registration, SSE transport
- Service Layer: Business logic for indexing, searching, task management
- Repository Service: File system operations, git integration, .gitignore handling
- Embedding Service: Ollama integration for generating text embeddings
- Data Layer: PostgreSQL with pgvector for storage and similarity search
- Indexing: Repository → Parse → Chunk → Embed → Store
- Searching: Query → Embed → Vector Search → Rank → Return
- Task Tracking: Create → Update → Git Integration → Query
# Run all tests with coverage
pytest tests/ -v --cov=src --cov-report=term-missing
# Run specific test categories
pytest tests/unit/ -v # Unit tests only
pytest tests/integration/ -v # Integration tests
pytest tests/contract/ -v # Contract tests
- Unit Tests: Fast, isolated component tests
- Integration Tests: Database and service integration
- Contract Tests: MCP protocol compliance validation
- Performance Tests: Latency and throughput benchmarks
- Minimum coverage: 95%
- Critical paths: 100%
- View HTML report:
open htmlcov/index.html
-- Optimize vector searches
CREATE INDEX ON chunks USING ivfflat (embedding vector_cosine_ops)
WITH (lists = 100);
-- Adjust work_mem for large result sets
ALTER SYSTEM SET work_mem = '256MB';
SELECT pg_reload_conf();
# In .env
DATABASE_POOL_SIZE=20 # Connection pool size
DATABASE_MAX_OVERFLOW=10 # Max overflow connections
DATABASE_POOL_TIMEOUT=30 # Connection timeout in seconds
# Adjust based on available memory
EMBEDDING_BATCH_SIZE=100 # For systems with 8GB+ RAM
EMBEDDING_BATCH_SIZE=50 # Default for 4GB RAM
EMBEDDING_BATCH_SIZE=25 # For constrained environments
-
Database Connection Failed
- Check PostgreSQL is running:
pg_ctl status
- Verify DATABASE_URL in .env
- Ensure database exists:
psql -U postgres -l
- Check PostgreSQL is running:
-
Ollama Connection Error
- Check Ollama is running:
curl http://localhost:11434/api/tags
- Verify model is installed:
ollama list
- Check OLLAMA_BASE_URL in .env
- Check Ollama is running:
-
Slow Performance
- Check database indexes:
\di
in psql - Monitor query performance: See logs at LOG_FILE path
- Adjust batch sizes and connection pool
- Check database indexes:
For detailed troubleshooting, see docs/troubleshooting.md and docs/guides/SETUP_GUIDE.md.
We follow a specification-driven development workflow using the Specify framework.
- Feature Specification: Use
/specify
command to create feature specs - Planning: Generate implementation plan with
/plan
- Task Breakdown: Create tasks with
/tasks
- Implementation: Execute tasks with
/implement
# Create feature branch
git checkout -b 001-feature-name
# Make atomic commits
git add .
git commit -m "feat(component): add specific feature"
# Push and create PR
git push origin 001-feature-name
- Type Safety:
mypy --strict
must pass - Linting:
ruff check
with no errors - Testing: All tests must pass with 95%+ coverage
- Documentation: Update relevant docs with changes
- Simplicity Over Features: Focus on core semantic search
- Local-First Architecture: No cloud dependencies
- Protocol Compliance: Strict MCP adherence
- Performance Guarantees: Meet stated benchmarks
- Production Quality: Comprehensive error handling
See .specify/memory/constitution.md for full principles.
MIT License - see LICENSE file for details.
- Issues: GitHub Issues
- Documentation: Full documentation
- Logs: Check
/tmp/codebase-mcp.log
for detailed debugging
- Built with FastAPI, SQLAlchemy, and Pydantic
- Vector search powered by pgvector
- Embeddings via Ollama and nomic-embed-text
- Code parsing with tree-sitter