Skip to content

Ravenight13/codebase-mcp

Repository files navigation

Codebase MCP Server

A production-grade MCP (Model Context Protocol) server that indexes code repositories into PostgreSQL with pgvector for semantic search, designed specifically for AI coding assistants.

Overview

The Codebase MCP Server provides semantic code search capabilities through a focused, local-first architecture. It enables AI assistants to understand and navigate codebases efficiently by combining tree-sitter AST parsing with vector embeddings.

Key Features

  • Semantic Code Search: Natural language queries across indexed repositories
  • Repository Indexing: Fast scanning and chunking with tree-sitter parsers
  • Task Management: Development task tracking with git integration
  • MCP Protocol: Six focused tools via Server-Sent Events (SSE) and stdio (JSON-RPC)
  • Performance Guaranteed: 60-second indexing for 10K files, 500ms p95 search latency
  • Production Ready: Comprehensive error handling, structured logging, type safety

MCP Tools

  1. search_code: Semantic search across indexed code
  2. index_repository: Index a repository for searching
  3. get_task: Retrieve a specific development task
  4. list_tasks: List tasks with filtering options
  5. create_task: Create a new development task
  6. update_task: Update task status with git integration

Quick Start

1. Database Setup

# Create database
createdb codebase_mcp

# Initialize schema
psql -d codebase_mcp -f db/init_tables.sql

2. Install Dependencies

uv sync

3. Configure Claude Desktop

Edit ~/Library/Application Support/Claude/claude_desktop_config.json:

{
  "mcpServers": {
    "codebase-mcp": {
      "command": "uv",
      "args": [
        "run",
        "--with",
        "anthropic-mcp",
        "python",
        "/absolute/path/to/codebase-mcp/src/mcp/mcp_stdio_server_v3.py"
      ]
    }
  }
}

Important: Use absolute paths!

4. Start Ollama

ollama serve
ollama pull nomic-embed-text

5. Test

# Test database and tools
uv run python tests/test_tool_handlers.py

# Test repository indexing
uv run python tests/test_embeddings.py

Current Status

Working Tools (6/6) ✅

Tool Status Description
create_task ✅ Working Create development tasks with planning references
get_task ✅ Working Retrieve task by ID
list_tasks ✅ Working List tasks with filters (status, branch)
update_task ✅ Working Update tasks with git tracking (branch, commit)
index_repository ✅ Working Index code repositories with semantic chunking
search_code ✅ Working Semantic code search with pgvector similarity

Recent Fixes (Oct 6, 2025)

  • ✅ Parameter passing architecture (Pydantic models)
  • ✅ MCP schema mismatches (status enums, missing parameters)
  • ✅ Timezone/datetime compatibility (PostgreSQL)
  • ✅ Binary file filtering (images, cache dirs)

Test Results

✅ Task Management: 7/7 tests passed
✅ Repository Indexing: 2 files indexed, 6 chunks created
✅ Embeddings: 100% coverage (768-dim vectors)
✅ Database: Connection pooling, async operations working

Tool Usage Examples

Create a Task

In Claude Desktop:

Create a task called "Implement user authentication" with description "Add JWT-based authentication to the API"

Response:

{
  "id": "550e8400-e29b-41d4-a716-446655440000",
  "title": "Implement user authentication",
  "description": "Add JWT-based authentication to the API",
  "status": "need to be done",
  "created_at": "2025-10-06T21:30:00",
  "planning_references": []
}

Index a Repository

Index the repository at /Users/username/projects/myapp

Response:

{
  "repository_id": "abc123...",
  "files_indexed": 234,
  "chunks_created": 1456,
  "duration_seconds": 12.5,
  "status": "success"
}

Search Code

Search for "authentication middleware" in Python files

Response:

{
  "results": [
    {
      "file_path": "src/middleware/auth.py",
      "content": "def authenticate_request(request):\n    ...",
      "start_line": 45,
      "similarity_score": 0.92
    }
  ],
  "total_count": 5,
  "latency_ms": 250
}

Track Task with Git

Update task abc123 to status "in-progress" and link it to branch "feature/auth"

Response:

{
  "id": "abc123...",
  "status": "in-progress",
  "branches": ["feature/auth"],
  "commits": []
}

Architecture

Claude Desktop ↔ MCP Server ↔ Tool Handlers ↔ Services ↔ PostgreSQL
                                                    ↓
                                                 Ollama (embeddings)

See ARCHITECTURE.md for detailed component diagrams.

Documentation

Database Schema

11 tables with pgvector for semantic search:

Core Tables:

  • repositories - Indexed repositories
  • code_files - Source files with metadata
  • code_chunks - Semantic chunks with embeddings (vector(768))
  • tasks - Development tasks with git tracking
  • task_status_history - Audit trail

See docs/ARCHITECTURE.md for complete schema documentation.

Technology Stack

  • Server: Python 3.13+, MCP SDK, FastAPI patterns
  • Database: PostgreSQL 14+ with pgvector extension
  • Embeddings: Ollama (nomic-embed-text, 768 dimensions)
  • ORM: SQLAlchemy 2.0 (async), Pydantic for validation
  • Type Safety: Full mypy --strict compliance

Development

Running Tests

# Tool handlers
uv run python tests/test_tool_handlers.py

# Repository indexing
uv run python tests/test_embeddings.py

# Unit tests
uv run pytest tests/ -v

Code Structure

src/
├── mcp/
│   ├── mcp_stdio_server_v3.py    # MCP server entry point
│   └── tools/                     # Tool handlers
│       ├── tasks.py               # Task management
│       ├── indexing.py            # Repository indexing
│       └── search.py              # Semantic search
├── services/                      # Business logic layer
│   ├── tasks.py                   # Task CRUD + git tracking
│   ├── indexer.py                 # Indexing orchestration
│   ├── scanner.py                 # File discovery
│   ├── chunker.py                 # AST-based chunking
│   ├── embedder.py                # Ollama integration
│   └── searcher.py                # pgvector similarity search
└── models/                        # Database models + Pydantic schemas
    ├── task.py                    # Task, TaskCreate, TaskUpdate
    ├── code_chunk.py              # CodeChunk
    └── ...

Prerequisites

System Requirements

  • Python 3.11+ (3.13 compatible)
  • PostgreSQL 14+ with pgvector extension
  • Ollama for embedding generation
  • 4GB+ RAM recommended
  • SSD storage for optimal performance

PostgreSQL with pgvector

# Install PostgreSQL 14+
# macOS
brew install postgresql@14
brew services start postgresql@14

# Ubuntu/Debian
sudo apt-get update
sudo apt-get install postgresql-14 postgresql-contrib-14

# Install pgvector extension
# macOS
brew install pgvector

# Ubuntu/Debian
sudo apt install postgresql-14-pgvector

# Enable pgvector in your database
psql -U postgres -c "CREATE EXTENSION IF NOT EXISTS vector;"

Ollama Setup

# Install Ollama
# macOS
brew install ollama

# Linux
curl -fsSL https://ollama.com/install.sh | sh

# Start Ollama service
ollama serve

# Pull required embedding model
ollama pull nomic-embed-text

Installation

1. Clone the Repository

git clone https://github.com/cliffclarke/codebase-mcp.git
cd codebase-mcp

2. Create Virtual Environment

# Create virtual environment
python3.11 -m venv .venv

# Activate virtual environment
# macOS/Linux
source .venv/bin/activate

# Windows
.venv\Scripts\activate

3. Install Dependencies

# Install production dependencies
pip install -r requirements.txt

# For development (includes testing and linting tools)
pip install -r requirements-dev.txt

4. Configure Environment

# Copy example environment file
cp .env.example .env

# Edit .env with your configuration
nano .env

Environment Variables:

# Database Configuration
DATABASE_URL=postgresql+asyncpg://user:password@localhost:5432/codebase_mcp

# Ollama Configuration
OLLAMA_BASE_URL=http://localhost:11434
OLLAMA_EMBEDDING_MODEL=embeddinggemma

# Performance Tuning
EMBEDDING_BATCH_SIZE=50        # Batch size for embedding generation
MAX_CONCURRENT_REQUESTS=10     # Max parallel Ollama requests

# Logging
LOG_LEVEL=INFO                  # DEBUG, INFO, WARNING, ERROR
LOG_FILE=/tmp/codebase-mcp.log  # Log file location

Database Setup

1. Create Database

# Connect to PostgreSQL
psql -U postgres

# Create database
CREATE DATABASE codebase_mcp;

# Enable pgvector extension
\c codebase_mcp
CREATE EXTENSION IF NOT EXISTS vector;
\q

2. Initialize Schema

# Run database initialization script
python scripts/init_db.py

# Verify schema creation
alembic current

The initialization script will:

  • Create all required tables (repositories, files, chunks, tasks)
  • Set up vector indexes for similarity search
  • Configure connection pooling
  • Apply all database migrations

3. Verify Setup

# Check database connectivity
python -c "from src.database import Database; import asyncio; asyncio.run(Database.create_pool())"

# Run migration status check
alembic current

4. Database Reset & Cleanup

During development, you may need to reset your database. See DATABASE_RESET.md for three reset options:

  • scripts/clear_data.sh - Clear all data, keep schema (fastest, no restart needed)
  • scripts/reset_database.sh - Drop and recreate all tables (recommended for schema changes)
  • scripts/nuclear_reset.sh - Drop entire database (requires Claude Desktop restart)
# Quick data wipe (keeps schema)
./scripts/clear_data.sh

# Full table reset (recommended)
./scripts/reset_database.sh

# Nuclear option (drops database)
./scripts/nuclear_reset.sh

Running the Server

Development Mode

# Start with auto-reload
uvicorn src.main:app --reload --host 127.0.0.1 --port 3000

# With custom log level
LOG_LEVEL=DEBUG uvicorn src.main:app --reload

Production Mode

# Start production server
uvicorn src.main:app --host 0.0.0.0 --port 3000 --workers 4

# With gunicorn (recommended for production)
gunicorn src.main:app -w 4 -k uvicorn.workers.UvicornWorker --bind 0.0.0.0:3000

stdio Transport (CLI Mode)

The MCP server supports stdio transport for CLI clients via JSON-RPC 2.0 over stdin/stdout. This is ideal for command-line tools and scripted interactions.

# Start stdio server (reads JSON-RPC from stdin)
python -m src.mcp.stdio_server

# Echo a single request
echo '{"jsonrpc":"2.0","id":1,"method":"list_tasks","params":{"limit":5}}' | python -m src.mcp.stdio_server

# Pipe requests from a file (one JSON-RPC request per line)
cat requests.jsonl | python -m src.mcp.stdio_server

# Interactive mode (type JSON-RPC requests manually)
python -m src.mcp.stdio_server
{"jsonrpc":"2.0","id":1,"method":"get_task","params":{"task_id":"..."}}

JSON-RPC 2.0 Request Format:

{
  "jsonrpc": "2.0",
  "id": 1,
  "method": "search_code",
  "params": {
    "query": "async def",
    "limit": 10
  }
}

JSON-RPC 2.0 Response Format:

{
  "jsonrpc": "2.0",
  "id": 1,
  "result": {
    "results": [...],
    "total_count": 42,
    "latency_ms": 250
  }
}

Available Methods:

  • search_code - Semantic code search
  • index_repository - Index a repository
  • get_task - Get task by ID
  • list_tasks - List tasks with filters
  • create_task - Create new task
  • update_task - Update task status

Logging: All logs go to /tmp/codebase-mcp.log (configurable via LOG_FILE env var). No stdout/stderr pollution - only JSON-RPC protocol messages on stdout.

Health Check

# Check server health
curl http://localhost:3000/health

# Expected response:
{
  "status": "healthy",
  "database": "connected",
  "ollama": "connected",
  "version": "0.1.0"
}

Usage Examples

1. Index a Repository

# Via MCP protocol
{
  "tool": "index_repository",
  "arguments": {
    "path": "/path/to/your/repo",
    "name": "My Project",
    "force_reindex": false
  }
}

# Response
{
  "repository_id": "uuid-here",
  "files_indexed": 150,
  "chunks_created": 1200,
  "duration_seconds": 45.3,
  "status": "success"
}

2. Search Code

# Search for authentication logic
{
  "tool": "search_code",
  "arguments": {
    "query": "user authentication password validation",
    "limit": 10,
    "file_type": "py"
  }
}

# Response includes ranked code chunks with context
{
  "results": [...],
  "total_count": 25,
  "latency_ms": 230
}

3. Task Management

# Create a task
{
  "tool": "create_task",
  "arguments": {
    "title": "Implement rate limiting",
    "description": "Add rate limiting to API endpoints",
    "planning_references": ["specs/rate-limiting.md"]
  }
}

# Update task with git integration
{
  "tool": "update_task",
  "arguments": {
    "task_id": "task-uuid",
    "status": "complete",
    "branch": "feature/rate-limiting",
    "commit": "abc123..."
  }
}

Architecture

┌─────────────────────────────────────────────────┐
│                 MCP Client (AI)                 │
└─────────────────┬───────────────────────────────┘
                  │ SSE Protocol
┌─────────────────▼───────────────────────────────┐
│              MCP Server Layer                   │
│  ┌──────────────────────────────────────────┐  │
│  │         Tool Registration & Routing       │  │
│  └──────────────────────────────────────────┘  │
│  ┌──────────────────────────────────────────┐  │
│  │          Request/Response Handling        │  │
│  └──────────────────────────────────────────┘  │
└─────────────────┬───────────────────────────────┘
                  │
┌─────────────────▼───────────────────────────────┐
│              Service Layer                      │
│  ┌────────────┐ ┌────────────┐ ┌────────────┐  │
│  │  Indexer   │ │  Searcher  │ │Task Manager│  │
│  └──────┬─────┘ └──────┬─────┘ └──────┬─────┘  │
│         │              │              │         │
│  ┌──────▼──────────────▼──────────────▼──────┐ │
│  │          Repository Service                │ │
│  └──────┬─────────────────────────────────────┘ │
│         │                                       │
│  ┌──────▼─────────────────────────────────────┐ │
│  │          Embedding Service (Ollama)        │ │
│  └─────────────────────────────────────────────┘│
└─────────────────┬───────────────────────────────┘
                  │
┌─────────────────▼───────────────────────────────┐
│              Data Layer                         │
│  ┌──────────────────────────────────────────┐  │
│  │     PostgreSQL with pgvector              │  │
│  │  ┌──────────┐ ┌──────────┐ ┌──────────┐  │  │
│  │  │Repository│ │   Files  │ │  Chunks  │  │  │
│  │  └──────────┘ └──────────┘ └──────────┘  │  │
│  │  ┌──────────┐ ┌──────────────────────┐   │  │
│  │  │  Tasks   │ │  Vector Embeddings   │   │  │
│  │  └──────────┘ └──────────────────────┘   │  │
│  └──────────────────────────────────────────┘  │
└──────────────────────────────────────────────────┘

Component Overview

  • MCP Layer: Handles protocol compliance, tool registration, SSE transport
  • Service Layer: Business logic for indexing, searching, task management
  • Repository Service: File system operations, git integration, .gitignore handling
  • Embedding Service: Ollama integration for generating text embeddings
  • Data Layer: PostgreSQL with pgvector for storage and similarity search

Data Flow

  1. Indexing: Repository → Parse → Chunk → Embed → Store
  2. Searching: Query → Embed → Vector Search → Rank → Return
  3. Task Tracking: Create → Update → Git Integration → Query

Testing

Run All Tests

# Run all tests with coverage
pytest tests/ -v --cov=src --cov-report=term-missing

# Run specific test categories
pytest tests/unit/ -v          # Unit tests only
pytest tests/integration/ -v   # Integration tests
pytest tests/contract/ -v      # Contract tests

Test Categories

  • Unit Tests: Fast, isolated component tests
  • Integration Tests: Database and service integration
  • Contract Tests: MCP protocol compliance validation
  • Performance Tests: Latency and throughput benchmarks

Coverage Requirements

  • Minimum coverage: 95%
  • Critical paths: 100%
  • View HTML report: open htmlcov/index.html

Performance Tuning

Database Optimization

-- Optimize vector searches
CREATE INDEX ON chunks USING ivfflat (embedding vector_cosine_ops)
WITH (lists = 100);

-- Adjust work_mem for large result sets
ALTER SYSTEM SET work_mem = '256MB';
SELECT pg_reload_conf();

Connection Pool Settings

# In .env
DATABASE_POOL_SIZE=20        # Connection pool size
DATABASE_MAX_OVERFLOW=10     # Max overflow connections
DATABASE_POOL_TIMEOUT=30     # Connection timeout in seconds

Embedding Batch Size

# Adjust based on available memory
EMBEDDING_BATCH_SIZE=100     # For systems with 8GB+ RAM
EMBEDDING_BATCH_SIZE=50      # Default for 4GB RAM
EMBEDDING_BATCH_SIZE=25      # For constrained environments

Troubleshooting

Common Issues

  1. Database Connection Failed

    • Check PostgreSQL is running: pg_ctl status
    • Verify DATABASE_URL in .env
    • Ensure database exists: psql -U postgres -l
  2. Ollama Connection Error

    • Check Ollama is running: curl http://localhost:11434/api/tags
    • Verify model is installed: ollama list
    • Check OLLAMA_BASE_URL in .env
  3. Slow Performance

    • Check database indexes: \di in psql
    • Monitor query performance: See logs at LOG_FILE path
    • Adjust batch sizes and connection pool

For detailed troubleshooting, see docs/troubleshooting.md and docs/guides/SETUP_GUIDE.md.

Contributing

We follow a specification-driven development workflow using the Specify framework.

Development Workflow

  1. Feature Specification: Use /specify command to create feature specs
  2. Planning: Generate implementation plan with /plan
  3. Task Breakdown: Create tasks with /tasks
  4. Implementation: Execute tasks with /implement

Git Workflow

# Create feature branch
git checkout -b 001-feature-name

# Make atomic commits
git add .
git commit -m "feat(component): add specific feature"

# Push and create PR
git push origin 001-feature-name

Code Quality Standards

  • Type Safety: mypy --strict must pass
  • Linting: ruff check with no errors
  • Testing: All tests must pass with 95%+ coverage
  • Documentation: Update relevant docs with changes

Constitutional Principles

  1. Simplicity Over Features: Focus on core semantic search
  2. Local-First Architecture: No cloud dependencies
  3. Protocol Compliance: Strict MCP adherence
  4. Performance Guarantees: Meet stated benchmarks
  5. Production Quality: Comprehensive error handling

See .specify/memory/constitution.md for full principles.

License

MIT License - see LICENSE file for details.

Support

Acknowledgments

  • Built with FastAPI, SQLAlchemy, and Pydantic
  • Vector search powered by pgvector
  • Embeddings via Ollama and nomic-embed-text
  • Code parsing with tree-sitter

About

Production-grade MCP server for semantic code search with PostgreSQL and pgvector

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages