Skip to content

Reinforcement Learning - PPO (Proximal Policy Optimization) Implementation to Pong Game

License

Notifications You must be signed in to change notification settings

RsGoksel/Reinforcement-Learning-PongGame

Repository files navigation

Implementing Proximal Policy Optimization (PPO) for Reinforcement Learning in the Pong Game

🌟 Problem & Environment 🌟

The Pong game was discussed for the PPO solution example as problem. A2C and DQN can also be used if requested. It can be switch from train.py file. Read elaborated explanation down below and train your PONG Agent 🎮

Game Screen

10k


Reward:

Reward has been assigned as the distance between the Ball and Agent. Reward mechanism is:

  • If the Ball goes out -> - score,
  • If Agent hits the Ball -> + score,
  • If Agent gets closer to the ball (y coordinate) -> + score

Observation Space:

Observation array:

  • Euclidean distance between Agent and ball (sqrt(ball_x - Agent_x)**2 - (ball_y - Agent_y)**2),
  • Agent_Y_Coord
  • Agent_X_Coord
  • Ball_Y_Coord
  • Ball_X_Coord
  • Ball_Velocity

Action Space:

Action space is discrete(3). It means there is certain 3 moves the Agent able to do. Rise Up, hold and get down.


Usage

  • 🎲 test.py: Testing for the environment. You can display how game screen is.
  • train.py: Trains the Agent. You can change total_steps from Constants.py. Check it out
  • 🤖 Agent.py: Padlde & Agent class.
  • 🦾 evaluate.py: If you have any trained model, you can evaluate it with this file. Detailed usage is down below.
  • 🏠 Env.py : Environment class. You can alter the game rules, Reward mechanism and what ever you want.
  • 🔧 Constants.py : Stable variables of the Game. Screen width, hyperparameters etc.

Install required libraries initially: 📎

$ pip install -r requirements.txt

Test the environment and check everything is OK: 👍

$ python test.py

Let's begin to Train!

Default step is 100k. You can alter it from Constants.py file (Loading Libraries may take a time about 10 seconds)

$ python train.py

Evalute your model

! After the training, your model will be saved in 'models' file. Evaluate your trained model with adding --model parameter to terminal, Or use pretrained models Which in models folder.

$ python evaluate.py --model models/yourmodel

Utilizing a 200-step trained model:

$ python evaluate.py --model models/200k

After the Training 🦾

200k


About

Reinforcement Learning - PPO (Proximal Policy Optimization) Implementation to Pong Game

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published