This repository contains 4 mini AI/ML projects completed during my internship.
Each project includes datasets and Jupyter Notebooks for training and testing ML models.
- Goal: Predict whether a tumor is malignant or benign.
- Techniques Used: Logistic Regression, Random Forest
- Dataset: Breast Cancer Wisconsin Dataset (
data.csv
)
- Goal: Predict the winning team based on past IPL match data.
- Techniques Used: Decision Tree, Random Forest
- Dataset: IPL match dataset (
ipl_data.csv
)
- Goal: Predict the resale value of used cars based on age, mileage, fuel type, etc.
- Techniques Used: Linear Regression, Ridge Regression
- Dataset: Used car dataset (
car_data.csv
)
- Goal: Predict whether a patient is likely to have diabetes.
- Techniques Used: Support Vector Machine (SVM), Logistic Regression
- Dataset: Pima Indians Diabetes Dataset (
diabetes.xls
)
AI-ML-Internship-Projects/
│── README.md # Project overview
│── requirements.txt # Python dependencies
│
├── Breast_Cancer_Detection/
│ ├── data.csv
│ └── Breast_Cancer_Detection.ipynb
│
├── IPL_Winning_Team_Prediction/
│ ├── ipl_data.csv
│ └── IPL_Winning_Team_Prediction.ipynb
│
├── Car_Resale_Price_Prediction/
│ ├── car_data.csv
│ └── Car_Resale_Price_Prediction.ipynb
│
└── Diabetes_Prediction/
│ ├── diabetes.xls
│ └── Diabetes_Prediction.ipynb