Skip to content

SachJbp/TextDecepter

Repository files navigation

Hard-Label-Black-Box-Attack-on-NLP

TextDecepter: Hard Label Black Box attack on NLP

Note: The pretrained target models used for testing the attack algorithm have been taken from Textfooler

Follow the steps to run the attack algorithm

  1. Download the counter-fitted-vectors.txt and put it in counter_fitting_embedding folder

  2. Download glove embeddings, extract 'glove.6B.200d.txt' and put it in 'word_embeddings_path' folder

  3. Download pretrained target model parameters from CNN ,LSTM, BERT and put it under subdirectories 'wordCNN', 'wordLSTM' and 'BERT' in 'saved_models' folder.

  4. Use the following syntax to run the attack algorithm

!python Attack_Classification.py --dataset_path 'data/imdb.txt' --target_model 'bert' --counter_fitting_embeddings_path "counter_fitting_embedding/counter-fitted-vectors.txt" --target_model_path "saved_models/bert/imdb" --word_embeddings_path "word_embeddings_path/glove.6B.200d.txt" --output_dir "adv_results" --pos_filter "coarse"

dataset_path can be either "data/imdb.txt" or "data/mr.txt"

target_model can be either wordCNN , wordLSTM, bert or gcp

The result files can be accessed from Google Drive link

About

Hard Label Black Box attack on NLP

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages