Skip to content

Image inpainting tool powered by SOTA AI Model. Remove any unwanted object, defect, people from your pictures or erase and replace(powered by stable diffusion) any thing on your pictures.



Repository files navigation


A free and open-source inpainting & outpainting tool powered by SOTA AI model.

total download version python version HuggingFace Spaces Open in Colab

Erase(LaMa) Replace Object(PowerPaint)
Draw Text(AnyText) Out-painting(PowerPaint)


Quick Start

Start webui

IOPaint provides a convenient webui for using the latest AI models to edit your images. You can install and start IOPaint easily by running following command:

# In order to use GPU, install cuda version of pytorch first.
# pip3 install torch==2.1.2 torchvision==0.16.2 --index-url
# AMD GPU users, please utilize the following command, only works on linux, as pytorch is not yet supported on Windows with ROCm.
# pip3 install torch==2.1.2 torchvision==0.16.2 --index-url

pip3 install iopaint
iopaint start --model=lama --device=cpu --port=8080

That's it, you can start using IOPaint by visiting http://localhost:8080 in your web browser.

All models will be downloaded automatically at startup. If you want to change the download directory, you can add --model-dir. More documentation can be found here

You can see other supported models at here and how to use local sd ckpt/safetensors file at here.


You can specify which plugins to use when starting the service, and you can view the commands to enable plugins by using iopaint start --help.

More demonstrations of the Plugin can be seen here

iopaint start --enable-interactive-seg --interactive-seg-device=cuda

Batch processing

You can also use IOPaint in the command line to batch process images:

iopaint run --model=lama --device=cpu \
--image=/path/to/image_folder \
--mask=/path/to/mask_folder \

--image is the folder containing input images, --mask is the folder containing corresponding mask images. When --mask is a path to a mask file, all images will be processed using this mask.

You can see more information about the available models and plugins supported by IOPaint below.


Install nodejs, then install the front-end dependencies.

git clone
cd IOPaint/web_app
npm install

Create a .env.local file in web_app and fill in the backend IP and port.


Start front-end development environment

npm run dev

Install back-end requirements and start back-end service

pip install -r requirements.txt
python3 --model lama --port 8080

Then you can visit http://localhost:5173/ for development. The front-end code will automatically update after being modified, but the back-end needs to restart the service after modifying the python code.