Skip to content

Simple & Easy-to-use python modules to perform Quick Exploratory Data Analysis for any structured dataset!

License

Notifications You must be signed in to change notification settings

Sarkaft/QuickDA

 
 

Repository files navigation

Quick-EDA

Simple & Easy-to-use python modules to perform Quick Exploratory Data Analysis for any structured dataset!

QuickDA

You will need to have Python 3 and Jupyter Notebook installed in your local system. Once installed, clone this repository to your local to get the project structure setup.

git clone https://github.com/sid-the-coder/QuickDA.git

You will also need to install few python package dependencies in your evironment to get started. You can do this by:

pip3 install -r requirements.txt

OR you can also install the package from PyPi Index using the pip installer:

pip3 install quickda

Table of Contents

  1. Data Exploration - explore(data)

    • data: pd.DataFrame
    • method: string, default="summarize"
      • "summarize" : Generates a summary statistics of the dataset
      • "profile" : Generates a HTML Report of the Dataset Profile
    • report_name: string, default="Dataset Report"
      • Parameter to customise the generated report name
    • is_large_dataset: Boolean, default=False
      • Parameter set to True explicitly to flag, in case of a large dataset
  2. Data Cleaning - clean(data) : [Returns DataFrame]

    • data: pd.DataFrame
    • method: string, default="default"
      • "default" : Standardizes column names, Removes duplicates rows and Drops missing values
      • "standardize" : Standardizes column names
      • "dropcols" : Drops columns specified by the user
      • "duplicates" : Removes duplicate rows
      • "replaceval" : Replaces a value in dataframe with new value specified by the user
      • "fillmissing" : Interpolates all columns with missing values using forward filling
      • "dropmissing" : Drops all rows with missing values
      • "cardinality" : Reduces Cardinality of a column given a threshold
      • "dtypes" : Explicitly converts the Data Types as specified by the user
      • "outliers" : Removes all outliers in data using IQR method
    • columns: list/string, default=[]
      • Parameter to specify column names in the DataFrame
    • dtype: string, default="numeric"
      • "numeric" : Converts columns dtype to numeric
      • "category" : Converts columns dtype to category
      • "datetime" : Converts columns dtype to datetime
    • to_replace: string/integer/regex, default=""
      • Parameter to pass a value to replace in the DataFrane
    • value: string/integer/regex, default=np.nan
      • Parameter to pass a new value that replaces an old value in the Dataframe
    • threshold: float, default=0
      • Parameter to set threshold in the range of [0,1] for cardinality
  3. EDA Numerical Features - eda_num(data)

    • data: pd.DataFrame
    • method: string, default="default"
      • "default" : Shows all Outlier & Distribution Analysis via BoxPlots & Histograms
      • "correlation" : Gets the correlation matrix between all numerical features
    • bins: integer, default=10
      • Parameter to set the number of bins while displaying histograms
  4. EDA Categorical Features - eda_cat(data, x)

    • data: pd.DataFrame
    • x: string, First Categorical Type Column Name
    • y: string, default=None
      • Parameter to pass the Second Categorical Type Column Name
    • method: string, default="default"
      • "default" : Shows category count plot & summarizes it in a frequency table
  5. EDA Numerical with Categorical Features - eda_numcat(data, x, y)

    • data: pd.DataFrame
    • x: string/list, Numeric/Categorical Type Column Name(s)
    • y: string/list, Numeric/Categorical Type Column Name(s)
    • method: string, default="pps"
      • "pps" : Calculates Predictive Power Score Matrix
      • "relationship" : Shows Scatterplot of given features
      • "comparison" : Shows violin plots to compare categories across numerical features
      • "pivot" : Generates pivot table using column names, values and aggregation function
    • hue: string, default=None
      • Parameter to visualise a categorical Type feature within scatterplots
    • values: string/list, default=None
      • Parameter to set columns to aggregate on pivot views
    • aggfunc: string, default="mean"
      • Parameter to set aggregate functions on pivot tables
      • Example: 'min', 'max', 'mean', 'median', 'sum', 'count'
  6. EDA Time Series Data - eda_timeseries(data, x, y)

    • data: pd.DataFrame
    • x: string, Datetime Type Column Name
    • y: string, Numeric Type Column Name

Upcoming Work

  1. Basic Preprocessing for Text Data - Tokenization, Normalization, Noise Removal, Lemmatization
  2. EDA for Text Data - NGrams, POS tagging, Word Cloud, Sentiment Analysis
  3. Quick Insight Generation for all EDA steps - Generate easy-to-read textual insights

About

Simple & Easy-to-use python modules to perform Quick Exploratory Data Analysis for any structured dataset!

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 76.6%
  • JavaScript 10.4%
  • Jupyter Notebook 8.3%
  • HTML 4.1%
  • C 0.5%
  • C++ 0.1%