Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion ext/LinearSolveEnzymeExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -147,10 +147,12 @@ function EnzymeCore.EnzymeRules.reverse(config, func::Const{typeof(LinearSolve.s
elseif _linsolve.alg isa LinearSolve.AbstractKrylovSubspaceMethod
# Doesn't modify `A`, so it's safe to just reuse it
invprob = LinearSolve.LinearProblem(transpose(_linsolve.A), dy)
solve(invprob;
solve(invprob, _linearsolve.alg;
abstol = _linsolve.val.abstol,
reltol = _linsolve.val.reltol,
verbose = _linsolve.val.verbose)
elseif _linsolve.alg isa LinearSolve.DefaultLinearSolver
LinearSolve.defaultalg_adjoint_eval(_linsolve, dy)
else
error("Algorithm $(_linsolve.alg) is currently not supported by Enzyme rules on LinearSolve.jl. Please open an issue on LinearSolve.jl detailing which algorithm is missing the adjoint handling")
end
Expand Down
58 changes: 58 additions & 0 deletions src/default.jl
Original file line number Diff line number Diff line change
Expand Up @@ -362,3 +362,61 @@ end
end
ex = Expr(:if, ex.args...)
end

"""
```
elseif DefaultAlgorithmChoice.LUFactorization === cache.alg
(cache.cacheval.LUFactorization)' \\ dy
else
...
end
```
"""
@generated function defaultalg_adjoint_eval(cache::LinearCache, dy)
ex = :()
for alg in first.(EnumX.symbol_map(DefaultAlgorithmChoice.T))
newex = if alg in Symbol.((DefaultAlgorithmChoice.MKLLUFactorization,
DefaultAlgorithmChoice.AppleAccelerateLUFactorization,
DefaultAlgorithmChoice.RFLUFactorization))
quote
getproperty(cache.cacheval,$(Meta.quot(alg)))[1]' \ dy
end
elseif alg in Symbol.((DefaultAlgorithmChoice.LUFactorization,
DefaultAlgorithmChoice.QRFactorization,
DefaultAlgorithmChoice.KLUFactorization,
DefaultAlgorithmChoice.UMFPACKFactorization,
DefaultAlgorithmChoice.LDLtFactorization,
DefaultAlgorithmChoice.SparspakFactorization,
DefaultAlgorithmChoice.BunchKaufmanFactorization,
DefaultAlgorithmChoice.CHOLMODFactorization,
DefaultAlgorithmChoice.SVDFactorization,
DefaultAlgorithmChoice.CholeskyFactorization,
DefaultAlgorithmChoice.NormalCholeskyFactorization,
DefaultAlgorithmChoice.QRFactorizationPivoted,
DefaultAlgorithmChoice.GenericLUFactorization))
quote
getproperty(cache.cacheval,$(Meta.quot(alg)))' \ dy
end
elseif alg in Symbol.((DefaultAlgorithmChoice.KrylovJL_GMRES,))
quote
invprob = LinearSolve.LinearProblem(transpose(cache.A), dy)
solve(invprob, cache.alg;
abstol = cache.val.abstol,
reltol = cache.val.reltol,
verbose = cache.val.verbose)
end
else
quote
error("Default linear solver with algorithm $(alg) is currently not supported by Enzyme rules on LinearSolve.jl. Please open an issue on LinearSolve.jl detailing which algorithm is missing the adjoint handling")
end
end

ex = if ex == :()
Expr(:elseif, :(getproperty(DefaultAlgorithmChoice, $(Meta.quot(alg))) === cache.alg.alg), newex,
:(error("Algorithm Choice not Allowed")))
else
Expr(:elseif, :(getproperty(DefaultAlgorithmChoice, $(Meta.quot(alg))) === cache.alg.alg), newex, ex)
end
end
ex = Expr(:if, ex.args...)
end
17 changes: 17 additions & 0 deletions test/enzyme.jl
Original file line number Diff line number Diff line change
Expand Up @@ -26,13 +26,30 @@ db12 = ForwardDiff.gradient(x->f(eltype(x).(A),x), copy(b1))
@test dA ≈ dA2
@test db1 ≈ db12

A = rand(n, n);
dA = zeros(n, n);
b1 = rand(n);
db1 = zeros(n);

_ff = (x,y) -> f(x,y; alg = LinearSolve.DefaultLinearSolver(LinearSolve.DefaultAlgorithmChoice.LUFactorization))
_ff(copy(A), copy(b1))

Enzyme.autodiff(Reverse, (x,y) -> f(x,y; alg = LinearSolve.DefaultLinearSolver(LinearSolve.DefaultAlgorithmChoice.LUFactorization)), Duplicated(copy(A), dA), Duplicated(copy(b1), db1))

dA2 = ForwardDiff.gradient(x->f(x,eltype(x).(b1)), copy(A))
db12 = ForwardDiff.gradient(x->f(eltype(x).(A),x), copy(b1))

@test dA ≈ dA2
@test db1 ≈ db12

A = rand(n, n);
dA = zeros(n, n);
dA2 = zeros(n, n);
b1 = rand(n);
db1 = zeros(n);
db12 = zeros(n);


# Batch test
n = 4
A = rand(n, n);
Expand Down