Skip to content

Problem with 2D Poisson-Eqn. PDE #1204

@RainerHeintzmann

Description

@RainerHeintzmann

Trying to reproduce the Poisson equation example from the JuliaCon talk, I hit a dead end, see also here.
I locally added compat entries for DiffEqOperators.jl so that it accepts the current version of MTK, but for 2-dimensional PDEs always the same problem seems to be appearing:

julia> depvar_ops = map(x->operation(x.val),pde_system.depvars)
ERROR: type CallWithMetadata has no field val
Stacktrace:
 [1] getproperty(x::Symbolics.CallWithMetadata{SymbolicUtils.FnType{Tuple, Real}, Base.ImmutableDict{DataType, Any}}, f::Symbol)
   @ Base .\Base.jl:33
 [2] (::var"#7#8")(x::Symbolics.CallWithMetadata{SymbolicUtils.FnType{Tuple, Real}, Base.ImmutableDict{DataType, Any}})
   @ Main .\REPL[19]:1
 [3] iterate
   @ .\generator.jl:47 [inlined]
 [4] _collect
   @ .\array.jl:691 [inlined]
 [5] collect_similar(cont::Vector{Symbolics.CallWithMetadata{SymbolicUtils.FnType{Tuple, Real}, Base.ImmutableDict{DataType, Any}}}, itr::Base.Generator{Vector{Symbolics.CallWithMetadata{SymbolicUtils.FnType{Tuple, Real}, Base.ImmutableDict{DataType, Any}}}, var"#7#8"})
   @ Base .\array.jl:606
 [6] map(f::Function, A::Vector{Symbolics.CallWithMetadata{SymbolicUtils.FnType{Tuple, Real}, Base.ImmutableDict{DataType, Any}}})
   @ Base .\abstractarray.jl:2294
 [7] top-level scope
   @ REPL[19]:1

Here is the Poinsson example that causes this problem:

using ModelingToolkit, DiffEqOperators, DifferentialEquations, DomainSets
import ModelingToolkit: Interval, infimum, supremum

@parameters x y
@variables u(..)
Dxx = Differential(x)^2
Dyy = Differential(y)^2

eq = (Dxx(u(x,y)) + Dyy(u(x,y)) ~ -sin(pi*x)*sin(pi*y))

bcs = [u(0,y) ~ 0.f0, u(1,y) ~ -sin(pi*1)*sin(pi*y),
       u(x,0) ~ 0.f0, u(x,1) ~ -sin(pi*x)*sin(pi*1) ]

domains = [x  Interval(0.0,1.0),
           y  Interval(0.0,1.0)]  # \in

pde_system = PDESystem(eq, bcs, domains, [x,y], [u], name=:Poisson_System)

dx = 0.05; dy = 0.05;
discretization = MOLFiniteDifference([x=>dx, y=>dy], nothing, centered_order=2)

using ModelingToolkit: operation
depvar_ops = map(x->operation(x.val),pde_system.depvars)   # copied from DiffEqOperators.jl, which shows the problem.

prob = discretize(pde_system, discretization)  # Here the above problem appears
sol = solve(prob)

For a 1D problem, like the diffusion example, the code runs fine.
Any ideas how to fix this for this 2D Poisson equation example?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions