Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Newmark beta method #2187

Draft
wants to merge 14 commits into
base: master
Choose a base branch
from
3 changes: 2 additions & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,7 @@ OrdinaryDiffEqIMEXMultistep = "9f002381-b378-40b7-97a6-27a27c83f129"
OrdinaryDiffEqLinear = "521117fe-8c41-49f8-b3b6-30780b3f0fb5"
OrdinaryDiffEqLowOrderRK = "1344f307-1e59-4825-a18e-ace9aa3fa4c6"
OrdinaryDiffEqLowStorageRK = "b0944070-b475-4768-8dec-fb6eb410534d"
OrdinaryDiffEqNewmark = "d204908a-63b9-11ef-18f5-cfec7123a93b"
OrdinaryDiffEqNonlinearSolve = "127b3ac7-2247-4354-8eb6-78cf4e7c58e8"
OrdinaryDiffEqNordsieck = "c9986a66-5c92-4813-8696-a7ec84c806c8"
OrdinaryDiffEqPDIRK = "5dd0a6cf-3d4b-4314-aa06-06d4e299bc89"
Expand Down Expand Up @@ -121,8 +122,8 @@ OrdinaryDiffEqQPRK = "1"
OrdinaryDiffEqRKN = "1"
OrdinaryDiffEqRosenbrock = "1"
OrdinaryDiffEqSDIRK = "1"
OrdinaryDiffEqStabilizedIRK = "1"
OrdinaryDiffEqSSPRK = "1"
OrdinaryDiffEqStabilizedIRK = "1"
OrdinaryDiffEqStabilizedRK = "1"
OrdinaryDiffEqSymplecticRK = "1"
OrdinaryDiffEqTsit5 = "1"
Expand Down
8 changes: 8 additions & 0 deletions lib/OrdinaryDiffEqCore/src/algorithms.jl
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,14 @@ abstract type OrdinaryDiffEqAdaptivePartitionedAlgorithm <: OrdinaryDiffEqAdapti
const PartitionedAlgorithm = Union{OrdinaryDiffEqPartitionedAlgorithm,
OrdinaryDiffEqAdaptivePartitionedAlgorithm}

# Second order ODE Specific Algorithms
abstract type OrdinaryDiffEqImplicitSecondOrderAlgorithm{CS, AD, FDT, ST, CJ} <:
OrdinaryDiffEqImplicitAlgorithm{CS, AD, FDT, ST, CJ} end
abstract type OrdinaryDiffEqAdaptiveImplicitSecondOrderAlgorithm{CS, AD, FDT, ST, CJ} <:
OrdinaryDiffEqAdaptiveImplicitAlgorithm{CS, AD, FDT, ST, CJ} end
const ImplicitSecondOrderAlgorithm = Union{OrdinaryDiffEqImplicitSecondOrderAlgorithm,
OrdinaryDiffEqAdaptiveImplicitSecondOrderAlgorithm}

function DiffEqBase.remake(thing::OrdinaryDiffEqAlgorithm; kwargs...)
T = SciMLBase.remaker_of(thing)
T(; SciMLBase.struct_as_namedtuple(thing)..., kwargs...)
Expand Down
46 changes: 46 additions & 0 deletions lib/OrdinaryDiffEqNewmark/Project.toml
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
name = "OrdinaryDiffEqNewmark"
uuid = "d204908a-63b9-11ef-18f5-cfec7123a93b"
authors = ["Dennis Ogiermann <termi-official@users.noreply.github.com>"]
version = "0.0.1"

[deps]
DiffEqBase = "2b5f629d-d688-5b77-993f-72d75c75574e"
FastBroadcast = "7034ab61-46d4-4ed7-9d0f-46aef9175898"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
MacroTools = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
MuladdMacro = "46d2c3a1-f734-5fdb-9937-b9b9aeba4221"
OrdinaryDiffEqCore = "bbf590c4-e513-4bbe-9b18-05decba2e5d8"
OrdinaryDiffEqDifferentiation = "4302a76b-040a-498a-8c04-15b101fed76b"
OrdinaryDiffEqNonlinearSolve = "127b3ac7-2247-4354-8eb6-78cf4e7c58e8"
RecursiveArrayTools = "731186ca-8d62-57ce-b412-fbd966d074cd"
Reexport = "189a3867-3050-52da-a836-e630ba90ab69"
SciMLBase = "0bca4576-84f4-4d90-8ffe-ffa030f20462"
TruncatedStacktraces = "781d530d-4396-4725-bb49-402e4bee1e77"

[compat]
DiffEqBase = "6.152.2"
DiffEqDevTools = "2.44.4"
FastBroadcast = "0.3.5"
LinearAlgebra = "<0.0.1, 1"
MacroTools = "0.5.13"
MuladdMacro = "0.2.4"
OrdinaryDiffEqCore = "1.1"
OrdinaryDiffEqDifferentiation = "<0.0.1, 1"
OrdinaryDiffEqNonlinearSolve = "<0.0.1, 1"
Random = "<0.0.1, 1"
RecursiveArrayTools = "3.27.0"
Reexport = "1.2.2"
SafeTestsets = "0.1.0"
SciMLBase = "2.48.1"
Test = "<0.0.1, 1"
TruncatedStacktraces = "1.4.0"
julia = "1.10"

[extras]
DiffEqDevTools = "f3b72e0c-5b89-59e1-b016-84e28bfd966d"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
SafeTestsets = "1bc83da4-3b8d-516f-aca4-4fe02f6d838f"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

[targets]
test = ["DiffEqDevTools", "Random", "SafeTestsets", "Test"]
40 changes: 40 additions & 0 deletions lib/OrdinaryDiffEqNewmark/src/OrdinaryDiffEqNewmark.jl
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I will strip down the imports to the used ones after we have fixed the remaining parts.

Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
module OrdinaryDiffEqNewmark

import OrdinaryDiffEqCore: alg_order, calculate_residuals!,
initialize!, perform_step!, @unpack, unwrap_alg,
calculate_residuals, alg_extrapolates,
OrdinaryDiffEqAlgorithm,
OrdinaryDiffEqMutableCache, OrdinaryDiffEqConstantCache,
OrdinaryDiffEqNewtonAdaptiveAlgorithm,
OrdinaryDiffEqNewtonAlgorithm,
OrdinaryDiffEqImplicitSecondOrderAlgorithm,
OrdinaryDiffEqAdaptiveImplicitSecondOrderAlgorithm,
DEFAULT_PRECS,
OrdinaryDiffEqAdaptiveAlgorithm, CompiledFloats, uses_uprev,
alg_cache, _vec, _reshape, @cache, isfsal, full_cache,
constvalue, _unwrap_val, _ode_interpolant,
trivial_limiter!, _ode_interpolant!,
isesdirk, issplit,
ssp_coefficient, get_fsalfirstlast, generic_solver_docstring
using TruncatedStacktraces, MuladdMacro, MacroTools, FastBroadcast, RecursiveArrayTools
using SciMLBase: DynamicalODEFunction
using LinearAlgebra: mul!, I
import OrdinaryDiffEqCore

using OrdinaryDiffEqDifferentiation: UJacobianWrapper, dolinsolve
using OrdinaryDiffEqNonlinearSolve: du_alias_or_new, markfirststage!, build_nlsolver,
nlsolve!, nlsolvefail, isnewton, get_W, set_new_W!,
NLNewton, COEFFICIENT_MULTISTEP

using Reexport
@reexport using DiffEqBase

include("algorithms.jl")
include("alg_utils.jl")
include("newmark_caches.jl")
include("newmark_nlsolve.jl")
include("newmark_perform_step.jl")

export NewmarkBeta

end
5 changes: 5 additions & 0 deletions lib/OrdinaryDiffEqNewmark/src/alg_utils.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
alg_extrapolates(alg::NewmarkBeta) = true
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I will recover the extrapolation once we have ironed out the remaining parts.


alg_order(alg::NewmarkBeta) = 1

is_mass_matrix_alg(alg::NewmarkBeta) = true
53 changes: 53 additions & 0 deletions lib/OrdinaryDiffEqNewmark/src/algorithms.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@

"""
NewmarkBeta

Classical Newmark-β method to solve second order ODEs, possibly in mass matrix form.
Local truncation errors are estimated with the estimate of Zienkiewicz and Xie.

## References

Newmark, Nathan (1959), "A method of computation for structural dynamics",
Journal of the Engineering Mechanics Division, 85 (EM3) (3): 67–94, doi:
https://doi.org/10.1061/JMCEA3.0000098

Zienkiewicz, O. C., and Y. M. Xie. "A simple error estimator and adaptive
time stepping procedure for dynamic analysis." Earthquake engineering &
structural dynamics 20.9 (1991): 871-887, doi:
https://doi.org/10.1002/eqe.4290200907
"""
struct NewmarkBeta{PT, F, F2, P, CS, AD, FDT, ST, CJ} <:
OrdinaryDiffEqAdaptiveImplicitSecondOrderAlgorithm{CS, AD, FDT, ST, CJ}
β::PT
γ::PT
linsolve::F
nlsolve::F2
precs::P
end

function NewmarkBeta(β, γ; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(),
concrete_jac = nothing, diff_type = Val{:forward},
linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(),
extrapolant = :linear)
NewmarkBeta{
typeof(β), typeof(linsolve), typeof(nlsolve), typeof(precs),
_unwrap_val(chunk_size), _unwrap_val(autodiff), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac)}(
β, γ,
linsolve,
nlsolve,
precs)
end

# Needed for remake
function NewmarkBeta(; β=0.25, γ=0.5, chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(),
concrete_jac = nothing, diff_type = Val{:forward},
linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(),
extrapolant = :linear)
NewmarkBeta{
typeof(β), typeof(linsolve), typeof(nlsolve), typeof(precs),
_unwrap_val(chunk_size), _unwrap_val(autodiff), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac)}(
β, γ,
linsolve,
nlsolve,
precs)
end
34 changes: 34 additions & 0 deletions lib/OrdinaryDiffEqNewmark/src/newmark_caches.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
@cache struct NewmarkBetaCache{uType, rateType, parameterType, N} <: OrdinaryDiffEqMutableCache
u::uType # Current solution
uprev::uType # Previous solution
upred::uType # Predictor solution
fsalfirst::rateType
β::parameterType # newmark parameter 1
γ::parameterType # newmark parameter 2
nlsolver::N # Inner solver
tmp::uType # temporary, because it is required.
end

function alg_cache(alg::NewmarkBeta, u, rate_prototype, ::Type{uEltypeNoUnits},
::Type{uBottomEltypeNoUnits}, ::Type{tTypeNoUnits}, uprev, uprev2, f, t,
dt, reltol, p, calck,
::Val{true}) where {uEltypeNoUnits, uBottomEltypeNoUnits, tTypeNoUnits}

β = alg.β
γ = alg.γ
upred = zero(u)
fsalfirst = zero(rate_prototype)

@assert 0.0 ≤ β ≤ 0.5
@assert 0.0 ≤ γ ≤ 1.0

c = 1.0
γ̂ = NaN # FIXME
nlsolver = build_nlsolver(alg, u.x[1], uprev.x[1], p, t, dt, f.f1, rate_prototype.x[1], uEltypeNoUnits,
uBottomEltypeNoUnits, tTypeNoUnits, γ̂, c, Val(true))

tmp = zero(u)
NewmarkBetaCache(u, uprev, upred, fsalfirst, β, γ, nlsolver, tmp)
end

get_fsalfirstlast(cache::NewmarkBetaCache, u) = (cache.fsalfirst, u) # FIXME use fsal
Empty file.
106 changes: 106 additions & 0 deletions lib/OrdinaryDiffEqNewmark/src/newmark_perform_step.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
function initialize!(integrator, cache::NewmarkBetaCache)
duprev, uprev = integrator.uprev.x
integrator.f(cache.fsalfirst, integrator.uprev, integrator.p, integrator.t)
integrator.stats.nf += 1
integrator.fsalfirst = cache.fsalfirst
integrator.fsallast = cache.fsalfirst
# integrator.fsallast = du_alias_or_new(cache.nlsolver, integrator.fsalfirst)
return
end

@muladd function perform_step!(integrator, cache::NewmarkBetaCache, repeat_step = false)
@unpack t, dt, f, p = integrator
@unpack upred, β, γ, nlsolver = cache

# This is derived from the idea stated in Nonlinear Finite Elements by Peter Wriggers, Ch 6.1.2 .
#
# Let us introduce the notation v = u' and a = u'' = v' such that we write the ODE problem as Ma = f(v,u,t).
# For the time discretization we assume that:
# uₙ₊₁ = uₙ + Δtₙ vₙ + Δtₙ²/2 aₙ₊ₐ₁
# vₙ₊₁ = vₙ + Δtₙ aₙ₊ₐ₂
# with a₁ = 1-2β and a₂ = 1-γ, such that
# uₙ₊₁ = uₙ + Δtₙ vₙ + Δtₙ²/2 [(1-2β)aₙ + 2βaₙ₊₁]
# vₙ₊₁ = vₙ + Δtₙ [(1-γ)aₙ + γaₙ₊₁]
#
# This allows us to reduce the implicit discretization to have only aₙ₊₁ as the unknown:
# Maₙ₊₁ = f(vₙ₊₁(aₙ₊₁), uₙ₊₁(aₙ₊₁), tₙ₊₁)
# = f(vₙ + Δtₙ [(1-γ)aₙ + γaₙ₊₁], uₙ + Δtₙ vₙ + Δtₙ²/2 [(1-2β)aₙ + 2βaₙ₊₁], tₙ₊₁)
# Such that we have to solve the nonlinear problem
# Maₙ₊₁ - f(vₙ₊₁(aₙ₊₁), uₙ₊₁(aₙ₊₁), tₙ₊₁) = 0
# for aₙ₊₁'' in each time step.

# For the Newton method the linearization becomes
# M - (dₐuₙ₊₁ ∂fᵤ + dₐvₙ₊₁ ∂fᵥ) = 0
# M - (Δtₙ²β ∂fᵤ + Δtₙγ ∂fᵥ) = 0

M = f.mass_matrix

# Evaluate predictor
aₙ = integrator.fsalfirst.x[1]
vₙ, uₙ = integrator.uprev.x

# _tmp = mass_matrix * @.. broadcast=false (α₁ * uprev+α₂ * uprev2)
# nlsolver.tmp = @.. broadcast=false _tmp/(dt * β₀)

# Note, we switch to notation closer to the SciML implemenation now. Needs to be double checked, also to be consistent with the formulation above
# nlsolve!(...) solves for
# dt⋅f(innertmp + γ̂⋅z, p, t + c⋅dt) + outertmp = z
# So we rewrite the problem
# u(tₙ₊₁)'' - f₁(ũ(tₙ₊₁) + u(tₙ₊₁)'' 2β Δtₙ², ũ(tₙ₊₁)' + u(tₙ₊₁)'' γ Δtₙ,t) = 0
# z = Δtₙ u(tₙ₊₁)'':
# z - Δtₙ f₁(ũ(tₙ₊₁) + z 2β Δtₙ, ũ(tₙ₊₁)' + z γ,t) = 0
# Δtₙ f₁(ũ(tₙ₊₁) + z 2β Δtₙ, ũ(tₙ₊₁)' + z γ,t) = z
# γ̂ = [γ, 2β Δtₙ]:
# Δtₙ f₁(ũ(tₙ₊₁) + z γ̂₂ , ũ(tₙ₊₁)' + z γ̂₁ ,t) = z
# innertmp = [ũ(tₙ₊₁)', ũ(tₙ₊₁)]:
# Δtₙ f₁(innertmp₂ + z 2β Δtₙ², innertmp₁ + z γ Δtₙ,t) = z
# Note: innertmp = nlsolve.tmp
# nlsolver.γ = ???
# nlsolver.tmp .= vₙ # TODO check f tmp is potentially modified and if not elimiate the allocation of upred_full
# nlsolver.z .= aₙ
# aₙ₊₁ = nlsolve!(nlsolver, integrator, cache, repeat_step) / dt
# nlsolvefail(nlsolver) && return

# Manually unrolled to see what needs to go where
aₙ₊₁ = copy(aₙ) # acceleration term
atmp = copy(aₙ)
J = zeros(length(aₙ), length(aₙ))
for i in 1:10 # = max iter - Newton loop for eq [1] above
uₙ₊₁ = uₙ + dt * vₙ + dt^2/2 * ((1-2β)*aₙ + 2β*aₙ₊₁)
vₙ₊₁ = vₙ + dt * ((1-γ)*aₙ + γ*aₙ₊₁)
# Compute residual
f.f1(atmp, vₙ₊₁, uₙ₊₁, p, t)
integrator.stats.nf += 1
residual = M*(aₙ₊₁ - atmp)
# Compute jacobian
f.jac(J, vₙ₊₁, uₙ₊₁, (γ*dt, β*dt*dt), p, t)
# Solve for increment
Δaₙ₊₁ = (M-J) \ residual
aₙ₊₁ .-= Δaₙ₊₁ # Looks like I messed up the signs somewhere :')
increment_norm = integrator.opts.internalnorm(Δaₙ₊₁, t)
increment_norm < 1e-4 && break
i == 10 && error("Newton diverged. ||Δaₙ₊₁||=$increment_norm")
Comment on lines +69 to +82
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@oscardssmith I think I need some help here regarding the integration with OrdinaryDiffEqNonlinearSolve.jl .

A critical missing piece is an interface for the evaluation of the Jacobian in a suitable form (especially via ad). For now I have just bypassed this with a custom jacobian function, e.g. for the harmonic oscillator in the test

    function harmonic_jac(J, v, u, weights, p, t)
        J[1,1] = weights[1] * (0.0) + weights[2] * (-1.0)
        J[1,2] = weights[1] * (0.0) + weights[2] * ( 0.0)
        J[2,2] = weights[1] * (0.0) + weights[2] * (-1.0)
        J[2,1] = weights[1] * (0.0) + weights[2] * ( 0.0)
    end

because many implicit second order ODE methods requires that J = Δtₙ²β ∂fᵤ + Δtₙγ ∂fᵥ . See above for a "full" derivation.

end

u = ArrayPartition(
vₙ + dt * ((1-γ)*aₙ + γ*aₙ₊₁),
uₙ + dt * vₙ + dt^2/2 * ((1-2β)*aₙ + 2β*aₙ₊₁),
)

f(integrator.fsallast, u, p, t + dt)
integrator.stats.nf += 1
integrator.u = u

#
if integrator.opts.adaptive
if integrator.success_iter == 0
integrator.EEst = one(integrator.EEst)
else
# Zienkiewicz and Xie (1991) Eq. 21
δaₙ₊₁ = (integrator.fsallast.x[1] - aₙ₊₁)
integrator.EEst = dt*dt/2 * (2*β - 1/3) * integrator.opts.internalnorm(δaₙ₊₁, t)
end
end

return
end
71 changes: 71 additions & 0 deletions lib/OrdinaryDiffEqNewmark/test/runtests.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
using OrdinaryDiffEqNewmark, Test, RecursiveArrayTools, DiffEqDevTools, Statistics

# Newmark methods with harmonic oscillator
@testset "Harmonic Oscillator" begin
u0 = fill(0.0, 2)
v0 = ones(2)
function f1_harmonic!(dv, v, u, p, t)
dv .= -u
end
function harmonic_jac(J, v, u, weights, p, t)
J[1,1] = weights[1] * (0.0) + weights[2] * (-1.0)
J[1,2] = weights[1] * (0.0) + weights[2] * ( 0.0)
J[2,2] = weights[1] * (0.0) + weights[2] * (-1.0)
J[2,1] = weights[1] * (0.0) + weights[2] * ( 0.0)
end
function f2_harmonic!(du, v, u, p, t)
du .= v
end
Comment on lines +16 to +18
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

What is the intended way to enforce this automatically? We do not have a SecondOrderODEFunction analogue to DynamicalODEFunction.

function harmonic_analytic(y0, p, x)
v0, u0 = y0.x
ArrayPartition(-u0 * sin(x) + v0 * cos(x), u0 * cos(x) + v0 * sin(x))
end

ff_harmonic! = DynamicalODEFunction(f1_harmonic!, f2_harmonic!; jac=harmonic_jac, analytic = harmonic_analytic)
prob = DynamicalODEProblem(ff_harmonic!, v0, u0, (0.0, 5.0))
dts = 1.0 ./ 2.0 .^ (5:-1:0)

sim = test_convergence(dts, prob, NewmarkBeta(), dense_errors = true)
@test sim.𝒪est[:l2]≈2 rtol=1e-1
end

# Newmark methods with damped oscillator
@testset "Damped Oscillator" begin
function damped_oscillator!(a, v, u, p, t)
@. a = -u - 0.5 * v
return nothing
end
function damped_jac(J, v, u, weights, p, t)
J[1,1] = weights[1] * (-0.5) + weights[2] * (-1.0)
end
function damped_oscillator_analytic(du0_u0, p, t)
ArrayPartition(
[
exp(-t / 4) / 15 * (15 * du0_u0[1] * cos(sqrt(15) * t / 4) -
sqrt(15) * (du0_u0[1] + 4 * du0_u0[2]) * sin(sqrt(15) * t / 4))
], # du
[
exp(-t / 4) / 15 * (15 * du0_u0[2] * cos(sqrt(15) * t / 4) +
sqrt(15) * (4 * du0_u0[1] + du0_u0[2]) * sin(sqrt(15) * t / 4))
]
)
end
ff_harmonic_damped! = DynamicalODEFunction(
damped_oscillator!,
(du, v, u, p, t) -> du = v;
jac=damped_jac,
analytic = damped_oscillator_analytic
)

prob = DynamicalODEProblem(ff_harmonic_damped!, [0.0], [1.0], (0.0, 10.0))
dts = 1.0 ./ 2.0 .^ (5:-1:0)

sim = test_convergence(dts, prob, NewmarkBeta(), dense_errors = true)
@test sim.𝒪est[:l2]≈2 rtol=1e-1

# TODO
# function damped_oscillator(v, u, p, t)
# return -u - 0.5 * v
# end
# ...
end
Loading
Loading