It appears that the tf.gradients function has a bug in it. For the example x^3 * 0.1 should be 3x^2 * 0.1 but it appears to be x^2 * 0.1. In TF.Net ``` let x = tf.constant(7.0) let y = x*x*x*tf.constant(0.1) sess.run(tf.gradients(y,x)).[0].Data<double>() //[|4.9|] ``` In Python ``` x = tf.constant(7.0) y = x*x*x*tf.constant(0.1) sess.run(tf.gradients(y,x)) #[14.7] ```