11
11
#include < LibJS/Runtime/AbstractOperations.h>
12
12
#include < LibJS/Runtime/Date.h>
13
13
#include < LibJS/Runtime/GlobalObject.h>
14
+ #include < LibJS/Runtime/Temporal/ISO8601.h>
14
15
#include < LibTimeZone/TimeZone.h>
15
16
#include < time.h>
16
17
17
18
namespace JS {
18
19
20
+ static Crypto::SignedBigInteger const s_one_billion_bigint { 1'000'000'000 };
21
+ static Crypto::SignedBigInteger const s_one_million_bigint { 1'000'000 };
22
+ static Crypto::SignedBigInteger const s_one_thousand_bigint { 1'000 };
23
+
19
24
Date* Date::create (Realm& realm, double date_value)
20
25
{
21
26
return realm.heap ().allocate <Date>(realm, date_value, *realm.intrinsics ().date_prototype ());
@@ -265,6 +270,7 @@ u8 week_day(double t)
265
270
}
266
271
267
272
// 21.4.1.7 LocalTZA ( t, isUTC ), https://tc39.es/ecma262/#sec-local-time-zone-adjustment
273
+ // FIXME: Remove this when ECMA-402 is synced with https://github.com/tc39/ecma262/commit/43fd5f25357333d8340bfb486b8f0738e6d0d0cb.
268
274
double local_tza (double time, [[maybe_unused]] bool is_utc, Optional<StringView> time_zone_override)
269
275
{
270
276
// The time_zone_override parameter is non-standard, but allows callers to override the system
@@ -285,21 +291,160 @@ double local_tza(double time, [[maybe_unused]] bool is_utc, Optional<StringView>
285
291
return maybe_offset.has_value () ? static_cast <double >(maybe_offset->seconds ) * 1000 : 0 ;
286
292
}
287
293
288
- // 21.4.1.8 LocalTime ( t ), https://tc39.es/ecma262/#sec-localtime
294
+ // 21.4.1.7 GetUTCEpochNanoseconds ( year, month, day, hour, minute, second, millisecond, microsecond, nanosecond ), https://tc39.es/ecma262/#sec-getutcepochnanoseconds
295
+ Crypto::SignedBigInteger get_utc_epoch_nanoseconds (i32 year, u8 month, u8 day, u8 hour, u8 minute, u8 second, u16 millisecond, u16 microsecond, u16 nanosecond)
296
+ {
297
+ // 1. Let date be MakeDay(𝔽(year), 𝔽(month - 1), 𝔽(day)).
298
+ auto date = make_day (year, month - 1 , day);
299
+
300
+ // 2. Let time be MakeTime(𝔽(hour), 𝔽(minute), 𝔽(second), 𝔽(millisecond)).
301
+ auto time = make_time (hour, minute, second, millisecond);
302
+
303
+ // 3. Let ms be MakeDate(date, time).
304
+ auto ms = make_date (date, time);
305
+
306
+ // 4. Assert: ms is an integral Number.
307
+ VERIFY (ms == trunc (ms));
308
+
309
+ // 5. Return ℤ(ℝ(ms) × 10^6 + microsecond × 10^3 + nanosecond).
310
+ auto result = Crypto::SignedBigInteger { ms }.multiplied_by (s_one_million_bigint);
311
+ result = result.plus (Crypto::SignedBigInteger { static_cast <i32 >(microsecond) }.multiplied_by (s_one_thousand_bigint));
312
+ result = result.plus (Crypto::SignedBigInteger { static_cast <i32 >(nanosecond) });
313
+ return result;
314
+ }
315
+
316
+ static i64 clip_bigint_to_sane_time (Crypto::SignedBigInteger const & value)
317
+ {
318
+ static Crypto::SignedBigInteger const min_bigint { NumericLimits<i64 >::min () };
319
+ static Crypto::SignedBigInteger const max_bigint { NumericLimits<i64 >::max () };
320
+
321
+ // The provided epoch (nano)seconds value is potentially out of range for AK::Time and subsequently
322
+ // get_time_zone_offset(). We can safely assume that the TZDB has no useful information that far
323
+ // into the past and future anyway, so clamp it to the i64 range.
324
+ if (value < min_bigint)
325
+ return NumericLimits<i64 >::min ();
326
+ if (value > max_bigint)
327
+ return NumericLimits<i64 >::max ();
328
+
329
+ // FIXME: Can we do this without string conversion?
330
+ return value.to_base (10 ).to_int <i64 >().value ();
331
+ }
332
+
333
+ // 21.4.1.8 GetNamedTimeZoneEpochNanoseconds ( timeZoneIdentifier, year, month, day, hour, minute, second, millisecond, microsecond, nanosecond ), https://tc39.es/ecma262/#sec-getnamedtimezoneepochnanoseconds
334
+ Vector<Crypto::SignedBigInteger> get_named_time_zone_epoch_nanoseconds (StringView time_zone_identifier, i32 year, u8 month, u8 day, u8 hour, u8 minute, u8 second, u16 millisecond, u16 microsecond, u16 nanosecond)
335
+ {
336
+ auto local_nanoseconds = get_utc_epoch_nanoseconds (year, month, day, hour, minute, second, millisecond, microsecond, nanosecond);
337
+ auto local_time = Time::from_nanoseconds (clip_bigint_to_sane_time (local_nanoseconds));
338
+
339
+ // FIXME: LibTimeZone does not behave exactly as the spec expects. It does not consider repeated or skipped time points.
340
+ auto offset = TimeZone::get_time_zone_offset (time_zone_identifier, local_time);
341
+
342
+ // Can only fail if the time zone identifier is invalid, which cannot be the case here.
343
+ VERIFY (offset.has_value ());
344
+
345
+ return { local_nanoseconds.plus (Crypto::SignedBigInteger { offset->seconds }.multiplied_by (s_one_billion_bigint)) };
346
+ }
347
+
348
+ // 21.4.1.9 GetNamedTimeZoneOffsetNanoseconds ( timeZoneIdentifier, epochNanoseconds ), https://tc39.es/ecma262/#sec-getnamedtimezoneoffsetnanoseconds
349
+ i64 get_named_time_zone_offset_nanoseconds (StringView time_zone_identifier, Crypto::SignedBigInteger const & epoch_nanoseconds)
350
+ {
351
+ // Only called with validated time zone identifier as argument.
352
+ auto time_zone = TimeZone::time_zone_from_string (time_zone_identifier);
353
+ VERIFY (time_zone.has_value ());
354
+
355
+ // Since Time::from_seconds() and Time::from_nanoseconds() both take an i64, converting to
356
+ // seconds first gives us a greater range. The TZDB doesn't have sub-second offsets.
357
+ auto seconds = epoch_nanoseconds.divided_by (s_one_billion_bigint).quotient ;
358
+ auto time = Time::from_seconds (clip_bigint_to_sane_time (seconds));
359
+
360
+ auto offset = TimeZone::get_time_zone_offset (*time_zone, time);
361
+ VERIFY (offset.has_value ());
362
+
363
+ return offset->seconds * 1'000'000'000 ;
364
+ }
365
+
366
+ // 21.4.1.10 DefaultTimeZone ( ), https://tc39.es/ecma262/#sec-defaulttimezone
367
+ StringView default_time_zone ()
368
+ {
369
+ return TimeZone::current_time_zone ();
370
+ }
371
+
372
+ // 21.4.1.11 LocalTime ( t ), https://tc39.es/ecma262/#sec-localtime
289
373
double local_time (double time)
290
374
{
291
- // 1. Return t + LocalTZA(t, true).
292
- return time + local_tza (time, true );
375
+ // 1. Let localTimeZone be DefaultTimeZone().
376
+ auto local_time_zone = default_time_zone ();
377
+
378
+ double offset_nanoseconds { 0 };
379
+
380
+ // 2. If IsTimeZoneOffsetString(localTimeZone) is true, then
381
+ if (is_time_zone_offset_string (local_time_zone)) {
382
+ // a. Let offsetNs be ParseTimeZoneOffsetString(localTimeZone).
383
+ offset_nanoseconds = parse_time_zone_offset_string (local_time_zone);
384
+ }
385
+ // 3. Else,
386
+ else {
387
+ // a. Let offsetNs be GetNamedTimeZoneOffsetNanoseconds(localTimeZone, ℤ(ℝ(t) × 10^6)).
388
+ auto time_bigint = Crypto::SignedBigInteger { time }.multiplied_by (s_one_million_bigint);
389
+ offset_nanoseconds = get_named_time_zone_offset_nanoseconds (local_time_zone, time_bigint);
390
+ }
391
+
392
+ // 4. Let offsetMs be truncate(offsetNs / 10^6).
393
+ auto offset_milliseconds = trunc (offset_nanoseconds / 1e6 );
394
+
395
+ // 5. Return t + 𝔽(offsetMs).
396
+ return time + offset_milliseconds;
293
397
}
294
398
295
- // 21.4.1.9 UTC ( t ), https://tc39.es/ecma262/#sec-utc-t
399
+ // 21.4.1.12 UTC ( t ), https://tc39.es/ecma262/#sec-utc-t
296
400
double utc_time (double time)
297
401
{
298
- // 1. Return t - LocalTZA(t, false).
299
- return time - local_tza (time, false );
402
+ // 1. Let localTimeZone be DefaultTimeZone().
403
+ auto local_time_zone = default_time_zone ();
404
+
405
+ double offset_nanoseconds { 0 };
406
+
407
+ // 2. If IsTimeZoneOffsetString(localTimeZone) is true, then
408
+ if (is_time_zone_offset_string (local_time_zone)) {
409
+ // a. Let offsetNs be ParseTimeZoneOffsetString(localTimeZone).
410
+ offset_nanoseconds = parse_time_zone_offset_string (local_time_zone);
411
+ }
412
+ // 3. Else,
413
+ else {
414
+ // a. Let possibleInstants be GetNamedTimeZoneEpochNanoseconds(localTimeZone, ℝ(YearFromTime(t)), ℝ(MonthFromTime(t)) + 1, ℝ(DateFromTime(t)), ℝ(HourFromTime(t)), ℝ(MinFromTime(t)), ℝ(SecFromTime(t)), ℝ(msFromTime(t)), 0, 0).
415
+ auto possible_instants = get_named_time_zone_epoch_nanoseconds (local_time_zone, year_from_time (time), month_from_time (time) + 1 , date_from_time (time), hour_from_time (time), min_from_time (time), sec_from_time (time), ms_from_time (time), 0 , 0 );
416
+
417
+ // b. NOTE: The following steps ensure that when t represents local time repeating multiple times at a negative time zone transition (e.g. when the daylight saving time ends or the time zone offset is decreased due to a time zone rule change) or skipped local time at a positive time zone transition (e.g. when the daylight saving time starts or the time zone offset is increased due to a time zone rule change), t is interpreted using the time zone offset before the transition.
418
+ Crypto::SignedBigInteger disambiguated_instant;
419
+
420
+ // c. If possibleInstants is not empty, then
421
+ if (!possible_instants.is_empty ()) {
422
+ // i. Let disambiguatedInstant be possibleInstants[0].
423
+ disambiguated_instant = move (possible_instants.first ());
424
+ }
425
+ // d. Else,
426
+ else {
427
+ // i. NOTE: t represents a local time skipped at a positive time zone transition (e.g. due to daylight saving time starting or a time zone rule change increasing the UTC offset).
428
+ // ii. Let possibleInstantsBefore be GetNamedTimeZoneEpochNanoseconds(localTimeZone, ℝ(YearFromTime(tBefore)), ℝ(MonthFromTime(tBefore)) + 1, ℝ(DateFromTime(tBefore)), ℝ(HourFromTime(tBefore)), ℝ(MinFromTime(tBefore)), ℝ(SecFromTime(tBefore)), ℝ(msFromTime(tBefore)), 0, 0), where tBefore is the largest integral Number < t for which possibleInstantsBefore is not empty (i.e., tBefore represents the last local time before the transition).
429
+ // iii. Let disambiguatedInstant be the last element of possibleInstantsBefore.
430
+
431
+ // FIXME: This branch currently cannot be reached with our implementation, because LibTimeZone does not handle skipped time points.
432
+ // When GetNamedTimeZoneEpochNanoseconds is updated to use a LibTimeZone API which does handle them, implement these steps.
433
+ VERIFY_NOT_REACHED ();
434
+ }
435
+
436
+ // e. Let offsetNs be GetNamedTimeZoneOffsetNanoseconds(localTimeZone, disambiguatedInstant).
437
+ offset_nanoseconds = get_named_time_zone_offset_nanoseconds (local_time_zone, disambiguated_instant);
438
+ }
439
+
440
+ // 4. Let offsetMs be truncate(offsetNs / 10^6).
441
+ auto offset_milliseconds = trunc (offset_nanoseconds / 1e6 );
442
+
443
+ // 5. Return t - 𝔽(offsetMs).
444
+ return time - offset_milliseconds;
300
445
}
301
446
302
- // 21.4.1.11 MakeTime ( hour, min, sec, ms ), https://tc39.es/ecma262/#sec-maketime
447
+ // 21.4.1.14 MakeTime ( hour, min, sec, ms ), https://tc39.es/ecma262/#sec-maketime
303
448
double make_time (double hour, double min, double sec, double ms)
304
449
{
305
450
// 1. If hour is not finite or min is not finite or sec is not finite or ms is not finite, return NaN.
@@ -334,7 +479,7 @@ double time_within_day(double time)
334
479
return modulo (time, ms_per_day);
335
480
}
336
481
337
- // 21.4.1.12 MakeDay ( year, month, date ), https://tc39.es/ecma262/#sec-makeday
482
+ // 21.4.1.15 MakeDay ( year, month, date ), https://tc39.es/ecma262/#sec-makeday
338
483
double make_day (double year, double month, double date)
339
484
{
340
485
// 1. If year is not finite or month is not finite or date is not finite, return NaN.
@@ -367,7 +512,7 @@ double make_day(double year, double month, double date)
367
512
return day (static_cast <double >(t)) + dt - 1 ;
368
513
}
369
514
370
- // 21.4.1.13 MakeDate ( day, time ), https://tc39.es/ecma262/#sec-makedate
515
+ // 21.4.1.16 MakeDate ( day, time ), https://tc39.es/ecma262/#sec-makedate
371
516
double make_date (double day, double time)
372
517
{
373
518
// 1. If day is not finite or time is not finite, return NaN.
@@ -385,7 +530,7 @@ double make_date(double day, double time)
385
530
return tv;
386
531
}
387
532
388
- // 21.4.1.14 TimeClip ( time ), https://tc39.es/ecma262/#sec-timeclip
533
+ // 21.4.1.17 TimeClip ( time ), https://tc39.es/ecma262/#sec-timeclip
389
534
double time_clip (double time)
390
535
{
391
536
// 1. If time is not finite, return NaN.
@@ -400,4 +545,111 @@ double time_clip(double time)
400
545
return to_integer_or_infinity (time);
401
546
}
402
547
548
+ // 21.4.1.19.1 IsTimeZoneOffsetString ( offsetString ), https://tc39.es/ecma262/#sec-istimezoneoffsetstring
549
+ bool is_time_zone_offset_string (StringView offset_string)
550
+ {
551
+ // 1. Let parseResult be ParseText(StringToCodePoints(offsetString), UTCOffset).
552
+ auto parse_result = Temporal::parse_iso8601 (Temporal::Production::TimeZoneNumericUTCOffset, offset_string);
553
+
554
+ // 2. If parseResult is a List of errors, return false.
555
+ // 3. Return true.
556
+ return parse_result.has_value ();
557
+ }
558
+
559
+ // 21.4.1.19.2 ParseTimeZoneOffsetString ( offsetString ), https://tc39.es/ecma262/#sec-parsetimezoneoffsetstring
560
+ double parse_time_zone_offset_string (StringView offset_string)
561
+ {
562
+ // 1. Let parseResult be ParseText(StringToCodePoints(offsetString), UTCOffset).
563
+ auto parse_result = Temporal::parse_iso8601 (Temporal::Production::TimeZoneNumericUTCOffset, offset_string);
564
+
565
+ // 2. Assert: parseResult is not a List of errors.
566
+ VERIFY (parse_result.has_value ());
567
+
568
+ // 3. Assert: parseResult contains a TemporalSign Parse Node.
569
+ VERIFY (parse_result->time_zone_utc_offset_sign .has_value ());
570
+
571
+ // 4. Let parsedSign be the source text matched by the TemporalSign Parse Node contained within parseResult.
572
+ auto parsed_sign = *parse_result->time_zone_utc_offset_sign ;
573
+ i8 sign { 0 };
574
+
575
+ // 5. If parsedSign is the single code point U+002D (HYPHEN-MINUS) or U+2212 (MINUS SIGN), then
576
+ if (parsed_sign.is_one_of (" -" sv, " \xE2\x88\x92 " sv)) {
577
+ // a. Let sign be -1.
578
+ sign = -1 ;
579
+ }
580
+ // 6. Else,
581
+ else {
582
+ // a. Let sign be 1.
583
+ sign = 1 ;
584
+ }
585
+
586
+ // 7. NOTE: Applications of StringToNumber below do not lose precision, since each of the parsed values is guaranteed to be a sufficiently short string of decimal digits.
587
+
588
+ // 8. Assert: parseResult contains an Hour Parse Node.
589
+ VERIFY (parse_result->time_zone_utc_offset_hour .has_value ());
590
+
591
+ // 9. Let parsedHours be the source text matched by the Hour Parse Node contained within parseResult.
592
+ auto parsed_hours = *parse_result->time_zone_utc_offset_hour ;
593
+
594
+ // 10. Let hours be ℝ(StringToNumber(CodePointsToString(parsedHours))).
595
+ auto hours = string_to_number (parsed_hours)->as_double ();
596
+
597
+ double minutes { 0 };
598
+ double seconds { 0 };
599
+ double nanoseconds { 0 };
600
+
601
+ // 11. If parseResult does not contain a MinuteSecond Parse Node, then
602
+ if (!parse_result->time_zone_utc_offset_minute .has_value ()) {
603
+ // a. Let minutes be 0.
604
+ minutes = 0 ;
605
+ }
606
+ // 12. Else,
607
+ else {
608
+ // a. Let parsedMinutes be the source text matched by the first MinuteSecond Parse Node contained within parseResult.
609
+ auto parsed_minutes = *parse_result->time_zone_utc_offset_minute ;
610
+
611
+ // b. Let minutes be ℝ(StringToNumber(CodePointsToString(parsedMinutes))).
612
+ minutes = string_to_number (parsed_minutes)->as_double ();
613
+ }
614
+
615
+ // 13. If parseResult does not contain two MinuteSecond Parse Nodes, then
616
+ if (!parse_result->time_zone_utc_offset_second .has_value ()) {
617
+ // a. Let seconds be 0.
618
+ seconds = 0 ;
619
+ }
620
+ // 14. Else,
621
+ else {
622
+ // a. Let parsedSeconds be the source text matched by the second secondSecond Parse Node contained within parseResult.
623
+ auto parsed_seconds = *parse_result->time_zone_utc_offset_second ;
624
+
625
+ // b. Let seconds be ℝ(StringToNumber(CodePointsToString(parsedSeconds))).
626
+ seconds = string_to_number (parsed_seconds)->as_double ();
627
+ }
628
+
629
+ // 15. If parseResult does not contain a TemporalDecimalFraction Parse Node, then
630
+ if (!parse_result->time_zone_utc_offset_fraction .has_value ()) {
631
+ // a. Let nanoseconds be 0.
632
+ nanoseconds = 0 ;
633
+ }
634
+ // 16. Else,
635
+ else {
636
+ // a. Let parsedFraction be the source text matched by the TemporalDecimalFraction Parse Node contained within parseResult.
637
+ auto parsed_fraction = *parse_result->time_zone_utc_offset_fraction ;
638
+
639
+ // b. Let fraction be the string-concatenation of CodePointsToString(parsedFraction) and "000000000".
640
+ auto fraction = String::formatted (" {}000000000" , parsed_fraction);
641
+
642
+ // c. Let nanosecondsString be the substring of fraction from 1 to 10.
643
+ auto nanoseconds_string = fraction.substring_view (1 , 9 );
644
+
645
+ // d. Let nanoseconds be ℝ(StringToNumber(nanosecondsString)).
646
+ nanoseconds = string_to_number (nanoseconds_string)->as_double ();
647
+ }
648
+
649
+ // 17. Return sign × (((hours × 60 + minutes) × 60 + seconds) × 10^9 + nanoseconds).
650
+ // NOTE: Using scientific notation (1e9) ensures the result of this expression is a double,
651
+ // which is important - otherwise it's all integers and the result overflows!
652
+ return sign * (((hours * 60 + minutes) * 60 + seconds) * 1e9 + nanoseconds);
653
+ }
654
+
403
655
}
0 commit comments