Skip to content

how to save SparseGP model  #990

Open
@quastarK

Description

@quastarK

hello i am trying to save and load SparseGPRegression model using the code

Saving models in a consistent way across versions:

let X, Y be data loaded above

Model creation:

m = GPy.models.GPRegression(X, Y)
m.optimize()
# 1: Saving a model:
np.save('model_save.npy', m.param_array)
# 2: loading a model
# Model creation, without initialization:
m_load = GPy.models.GPRegression(X, Y, initialize=False)
m_load.update_model(False) # do not call the underlying expensive algebra on load
m_load.initialize_parameter() # Initialize the parameters (connect the parameters up)
m_load[:] = np.load('model_save.npy') # Load the parameters
m_load.update_model(True) # Call the algebra only once
print(m_load)

My code :

sgp = GPy.models.SparseGPRegression(x_test, y_test, num_inducing=100,kernel=GPy.kern.RBF(5,ARD=True))
sgp.optimize()
np.save('smodel_save.npy', sgp.param_array)

m_load = GPy.models.SparseGPRegression(x_test, y_test, initialize=False)
m_load.update_model(False) # do not call the underlying expensive algebra on load
m_load.initialize_parameter() # Initialize the parameters (connect the parameters up)
m_load[:] = np.load('smodel_save.npy') # Load the parameters
m_load.update_model(True) # Call the algebra only once
print(m_load)

ValueError: Setting by slice or index only allowed with array-like

do you know how to make it works ??
does the above code work only for GPRegression model ??

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions