Skip to content

SkyBiometry Face Detection and Recognition REST API Python client library.

License

Notifications You must be signed in to change notification settings

SkyBiometry/python-face-client

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SkyBiometry Face Detection and Recognition API client library

SkyBiometry Face Detection and Recognition REST API client library.

For more information about the API and the return values, visit the official documentation.

Example

Here is a short example demonstrating how you can use this client.

Lets say that we want to create our own private namespace and train it to recognize Guido Van Rossum.

Here are the images which we will use for training our namespace index:

And here is the image which hopefully, after training our index will be recognized as "Guido Van Rossum":

http://farm1.static.flickr.com/41/104498903_bad315cee0.jpg

  1. First we create our private namespace named testns (this can be done on the SkyBiometry page).

  2. Now we import the module and instantiate the class with our SkyBiometry API_KEY and API_SECRET (you can get them by registering your application on SkyBiometry page):

    >> from face_client import FaceClient
    >> client = FaceClient('API_KEY', 'API_SECRET')
    
  3. Before training our namespace index I just want to show you that the image is not already recognized:

    >> client.faces_recognize('guido', 'http://farm1.static.flickr.com/41/104498903_bad315cee0.jpg', namespace = 'testns')
    
    {
        u'status': u'success',
        u'photos': [{
            u'url': u'http://farm1.static.flickr.com/41/104498903_bad315cee0.jpg',
            u'width': 500,
            u'tags': [{
                u'eye_left': {u'y': 31.2, u'x': 55.6},
                u'confirmed': False,
                u'uids': [],
                u'yaw': -45,
                u'manual': False,
                u'height': 18.13,
                u'width': 13.6,
                u'mouth_center': {u'y': 43.47, u'x': 52.6},
                u'nose': {u'y': 36.53, u'x': 53.4},
                u'eye_right': {u'y': 30.93, u'x': 48.0},
                u'pitch': 0,
                u'tid': u'TEMP_F@08e31221350a43d267be01d500f10086_1d12ece6a6ea2_48.20_35.73_0_1',
                u'attributes': {
                    u'gender': {u'confidence': 47, u'value': u'male'},
                    u'smiling': {u'confidence': 85, u'value': u'false'},
                    u'glasses': {u'confidence': 27, u'value': u'false'},
                    u'dark_glasses': {u'confidence': 89, u'value': u'false'},
                    u'face': {u'confidence': 71, u'value': u'true'}
                },
                u'recognizable': True,
                u'roll': 3,
                u'center': {u'y': 35.73, u'x': 48.2}
            }],
            u'pid': u'F@08e31221350a43d267be01d572dc824b_1d12ece6a6ea2',
            u'height': 375
        }],
        u'usage': {...omitted for clarity...}
    }
    

    As you can see, the "uids" list is empty, meaning that Guido Van Rossum is not yet recognized in our testns namespace.

  4. Saving the tags and training our index. For saving the tags, we need to provide the tags_save method with the tag ids, which we are obtained by using the faces_detect or faces_recognize method. In this example, I will use faces_detect:

    >> response = client.faces_detect('http://savasplace.com/wp-content/uploads/2009/04/guido-van-rossum.jpg,http://farm1.static.flickr.com/43/104506247_c748f20b83.jpg,http://farm1.static.flickr.com/67/200126290_2798330e61.jpg')
    >> tids = [photo['tags'][0]['tid'] for photo in response['photos']]
    >> tids
    
    [
        u'TEMP_F@0bf0294f6c43162105c9bdfa00bc00ab_15e78870a332a_47.00_28.50_0_1',
        u'TEMP_F@008f7f3d4f93956f2fd24b1e01000084_e29f2ba8f58c6_51.20_35.20_0_1',
        u'TEMP_F@0d38a4e97c5c63042b5da6da00a10088_73a8fb3908097_48.35_27.20_0_1'
    ]
    
  5. Now when we have the temporary tag ids, we can use them to save the tags and train our namespace index:

    >> client.tags_save(tids = ',' . join(tids), uid = 'guido@testns', label = 'Guido Van Rossum')
    
    {
        u'status': u'success',
        u'message': u'Tags saved with uid: guido@testns, label: Guido Van Rossum',
        u'saved_tags': [
            {u'tid': u'00bc00ab_15e78870a332a', u'detected_tid': u'TEMP_F@0bf0294f6c43162105c9bdfa00bc00ab_15e78870a332a_47.00_28.50_0_1'},
            {u'tid': u'01000084_e29f2ba8f58c6', u'detected_tid': u'TEMP_F@008f7f3d4f93956f2fd24b1e01000084_e29f2ba8f58c6_51.20_35.20_0_1'},
            {u'tid': u'00a10088_73a8fb3908097', u'detected_tid': u'TEMP_F@0d38a4e97c5c63042b5da6da00a10088_73a8fb3908097_48.35_27.20_0_1'}
        ]
    }
    
    >> client.faces_train('guido@testns')
    
    {
        u'status': u'success',
        u'created': [{
            u'training_set_size': 3,
            u'last_trained': 1361651583,
            u'uid': u'guido@testns',
            u'training_in_progress': False}
        ]
    }
    
  6. We can also check that the tags were saved by using the tags_get method:

    >> client.tags_get('guido@testns')
    
    {
        u'status': u'success',
        u'photos': [
            {u'url': u'http://farm1.static.flickr.com/67/200126290_2798330e61.jpg', ...omitted for clarity...},
            {u'url': u'http://farm1.static.flickr.com/43/104506247_c748f20b83.jpg', ...omitted for clarity...},
            {u'url': u'http://savasplace.com/wp-content/uploads/2009/04/guido-van-rossum.jpg', ...omitted for clarity...}
        ],
        u'usage': {...omitted for clarity...}
    }
    
  7. Now after we have trained our index, lets check if Guido is recognized:

    >> client.faces_recognize('all', 'http://farm1.static.flickr.com/41/104498903_bad315cee0.jpg', namespace = 'testns')
    
    {
        u'status': u'success',
        u'photos': [{
            u'url': u'http://farm1.static.flickr.com/41/104498903_bad315cee0.jpg',
            u'width': 500,
            u'tags': [{
                u'eye_left': {u'y': 31.2, u'x': 55.6},
                u'confirmed': False,
                u'uids': [{u'confidence': 34, u'uid': u'guido@testns'}],
                u'width': 13.6,
                u'yaw': -45,
                u'manual': False,
                u'height': 18.13,
                u'threshold': 30,
                u'mouth_center': {u'y': 43.47, u'x': 52.6},
                u'nose': {u'y': 36.53, u'x': 53.4},
                u'eye_right': {u'y': 30.93, u'x': 48.0},
                u'pitch': 0,
                u'tid': u'TEMP_F@08e31221350a43d267be01d500f10086_1d12ece6a6ea2_48.20_35.73_0_1',
                u'attributes': {
                    u'gender': {u'confidence': 47, u'value': u'male'},
                    u'smiling': {u'confidence': 85, u'value': u'false'},
                    u'glasses': {u'confidence': 27, u'value': u'false'},
                    u'dark_glasses': {u'confidence': 89, u'value': u'false'},
                    u'face': {u'confidence': 71, u'value': u'true'}
                },
                u'recognizable': True,
                u'roll': 3,
                u'center': {u'y': 35.73, u'x': 48.2}
            }],
            u'pid': u'F@08e31221350a43d267be01d572dc824b_1d12ece6a6ea2',
            u'height': 375
        }],
        u'usage': {...omitted for clarity...}
    }
    

    As you can see by looking at the "uids" list, Guido was now recognized with a 34% confidence!

For more information about the SkyBiometry Face Detection and Recognition API and how to use it, visit the official documentation.

About

SkyBiometry Face Detection and Recognition REST API Python client library.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%