Skip to content
/ ghp Public

An R package for general hierarchical partitioning, a method to measure the influence of variables on a goodness-of-fit

Notifications You must be signed in to change notification settings

Stan125/ghp

Repository files navigation

ghp

Build Status

GHP stands for General Hierarchical Partitioning. ghp is an implementation of the technique of hierarchical partitioning first mentioned by Chevan and Sutherland (1991). This method fits all possible models for a set of covariates and then extracts a goodness of fit (e.g. (R^2) for linear models) to obtain independent and joint contributions of the independent variables on the selected figure.

This package is an extension of the hier.part R package, developed by C. Walsh and R. Mac Nally in 2003. While hier.part is fast and simple at what it does, it is limited in the range of possible models as well as goodness of fit figures. Specifically, the motivation of this package is the ability to do deviance partitioning.

Installation

You can install ghp from github with:

# install.packages("devtools")
devtools::install_github("Stan125/ghp")

Example: Partitioning of rsquared in linear regression

Just call the ghp function with the name of the dependent variable (arg: dep) and a data.frame with all relevant variables to obtain the independent and joint effects of the explanatory covariates.

india <- ghp::india
results_lm <- ghp(depname = "stunting", india, method = "lm", gof = "r.squared")
results_lm
#> $results
#> # A tibble: 7 x 7
#>   var   param indep_effects joint_effects total_effects indep_perc
#>   <chr> <chr>         <dbl>         <dbl>         <dbl>      <dbl>
#> 1 cage  mu        0.0323        0.0123        0.0446      0.269   
#> 2 csex  mu        0.000746     -0.000167      0.000579    0.00623 
#> 3 brea… mu        0.0295        0.0166        0.0461      0.246   
#> 4 ctwin mu        0.0000974    -0.0000199     0.0000775   0.000814
#> 5 mage  mu        0.0322        0.00878       0.0410      0.269   
#> 6 mbmi  mu        0.0196        0.00872       0.0283      0.164   
#> 7 mrel… mu        0.00538       0.000626      0.00600     0.0449  
#> # … with 1 more variable: joint_perc <dbl>
#> 
#> $npar
#> [1] 1
#> 
#> $method
#> [1] "lm"
#> 
#> $gof
#> [1] "r.squared"
#> 
#> $joint_results
#> # A tibble: 8 x 15
#>   var      cage     csex breastfeeding    ctwin    mage    mbmi mreligion
#>   <fct>   <dbl>    <dbl>         <dbl>    <dbl>   <dbl>   <dbl>     <dbl>
#> 1 cage  0        1.74e-5       0.00404  3.57e-6 0.00140 9.85e-4   2.53e-4
#> 2 csex  0.00180  0.            0.00237 -1.12e-6 0.00128 1.18e-3   7.06e-5
#> 3 brea… 0.00343 -3.08e-5       0        2.86e-6 0.00139 1.77e-3   1.41e-4
#> 4 ctwin 0.00177 -2.21e-5       0.00238  0.      0.00126 1.22e-3   8.88e-5
#> 5 mage  0.00191  1.23e-6       0.00251  3.11e-6 0       2.30e-3  -3.25e-5
#> 6 mbmi  0.00150 -8.99e-5       0.00289 -2.49e-5 0.00231 0.        1.05e-4
#> 7 mrel… 0.00193 -4.27e-5       0.00243 -3.44e-6 0.00113 1.26e-3   0.     
#> 8 SUM   0.0123  -1.67e-4       0.0166  -1.99e-5 0.00878 8.72e-3   6.26e-4
#> # … with 7 more variables: cage_perc <dbl>, csex_perc <dbl>,
#> #   breastfeeding_perc <dbl>, ctwin_perc <dbl>, mage_perc <dbl>,
#> #   mbmi_perc <dbl>, mreligion_perc <dbl>
#> 
#> attr(,"class")
#> [1] "part"

The first dataframe captures the actual mean influence of the variable on the goodness-of-fit. Also, joint effects are calculated. The second dataframe shows the percentage influence. We can see that cage has the highest influence with (~43%).

Example: Partitioning of deviance in gamlss models

It is now possible to do deviance partitiong of gamlss models. Gamlss models can model multiple parameters of a distribution. ghp can handle up to two modeled parameters, so you can find out what influence covariates have on the second modeled parameter (e.g. the variance).

results_gamlss <- ghp("stunting", india, method = "gamlss", 
                      gof = "deviance", npar = 2)
results_gamlss
#> $results
#> # A tibble: 14 x 7
#>    var   param indep_effects joint_effects total_effects indep_perc
#>    <chr> <chr>         <dbl>         <dbl>         <dbl>      <dbl>
#>  1 cage  mu         -13.3         -4.35        -17.6       0.269   
#>  2 csex  mu          -0.309        0.0854       -0.224     0.00628 
#>  3 brea… mu         -12.1         -6.14        -18.2       0.245   
#>  4 ctwin mu          -0.0396       0.00969      -0.0299    0.000804
#>  5 mage  mu         -13.3         -2.87        -16.2       0.270   
#>  6 mbmi  mu          -8.03        -3.05        -11.1       0.163   
#>  7 mrel… mu          -2.23        -0.0941       -2.32      0.0453  
#>  8 cage  sigma       -9.96        -2.14        -12.1       0.280   
#>  9 csex  sigma       -0.577        0.0372       -0.540     0.0162  
#> 10 brea… sigma       -8.73        -1.01         -9.74      0.246   
#> 11 ctwin sigma      -11.7          2.47         -9.23      0.329   
#> 12 mage  sigma       -0.360        0.290        -0.0696    0.0101  
#> 13 mbmi  sigma       -0.100        0.0936       -0.00681   0.00282 
#> 14 mrel… sigma       -4.13         1.19         -2.94      0.116   
#> # … with 1 more variable: joint_perc <dbl>
#> 
#> $npar
#> [1] 2
#> 
#> $method
#> [1] "gamlss"
#> 
#> $gof
#> [1] "deviance"
#> 
#> $joint_results
#> $joint_results$res_mu
#> # A tibble: 8 x 15
#>   var     cage     csex breastfeeding    ctwin   mage   mbmi mreligion
#>   <fct>  <dbl>    <dbl>         <dbl>    <dbl>  <dbl>  <dbl>     <dbl>
#> 1 cage   0     -0.00400        -1.53  -1.10e-3 -0.433 -0.302  -0.0747 
#> 2 csex  -0.637  0              -0.873  7.02e-4 -0.420 -0.409  -0.00566
#> 3 brea… -1.27   0.0158          0     -8.18e-4 -0.429 -0.628  -0.0279 
#> 4 ctwin -0.624  0.0115         -0.879  0.      -0.413 -0.427  -0.0132 
#> 5 mage  -0.644  0.00257        -0.896 -9.37e-4  0     -0.849   0.0430 
#> 6 mbmi  -0.486  0.0395         -1.07   1.02e-2 -0.823  0      -0.0156 
#> 7 mrel… -0.682  0.0200         -0.891  1.60e-3 -0.354 -0.438   0      
#> 8 SUM   -4.35   0.0854         -6.14   9.69e-3 -2.87  -3.05   -0.0941 
#> # … with 7 more variables: cage_perc <dbl>, csex_perc <dbl>,
#> #   breastfeeding_perc <dbl>, ctwin_perc <dbl>, mage_perc <dbl>,
#> #   mbmi_perc <dbl>, mreligion_perc <dbl>
#> 
#> $joint_results$res_sigma
#> # A tibble: 8 x 15
#>   var     cage    csex breastfeeding ctwin   mage    mbmi mreligion
#>   <fct>  <dbl>   <dbl>         <dbl> <dbl>  <dbl>   <dbl>     <dbl>
#> 1 cage   0     0.00701      -0.588   0.497 0.0424 0.0123      0.162
#> 2 csex  -0.304 0            -0.145   0.352 0.0388 0.0128      0.178
#> 3 brea… -0.750 0.00498       0       0.521 0.0316 0.0163      0.308
#> 4 ctwin -0.161 0.00491       0.0243  0     0.0669 0.0284      0.169
#> 5 mage  -0.305 0.00264      -0.154   0.378 0      0.00911     0.202
#> 6 mbmi  -0.307 0.00478      -0.141   0.367 0.0372 0           0.171
#> 7 mrel… -0.314 0.0129       -0.00579 0.351 0.0732 0.0147      0    
#> 8 SUM   -2.14  0.0372       -1.01    2.47  0.290  0.0936      1.19 
#> # … with 7 more variables: cage_perc <dbl>, csex_perc <dbl>,
#> #   breastfeeding_perc <dbl>, ctwin_perc <dbl>, mage_perc <dbl>,
#> #   mbmi_perc <dbl>, mreligion_perc <dbl>
#> 
#> 
#> attr(,"class")
#> [1] "part"

Example: Variable grouping

Since 0.3.0 you can specify variable groups. The partitioning is now not happening with specific variables, but by testing all group combinations. In the given ghp::india dataset, which captures the nutrition of children in india we can now divide all covariates into to groups: those that give information about the child, and those that give information about the mother. Let’s try that out:

# Specifying the groups should happen in a data.frame 
groupings <- data.frame(varnames = colnames(india), 
                        groups = c("0", "child", "child", "mother", 
                                   "child", "mother", "mother", "mother"))
results_groups <- ghp(depname = "stunting", india, method = "lm", gof = "r.squared",
                      group_df = groupings)
results_groups
#> $results
#> # A tibble: 2 x 7
#>   var   param indep_effects joint_effects total_effects indep_perc
#>   <chr> <chr>         <dbl>         <dbl>         <dbl>      <dbl>
#> 1 child mu           0.0332        0.0116        0.0447      0.277
#> 2 moth… mu           0.0866        0.0116        0.0981      0.723
#> # … with 1 more variable: joint_perc <dbl>
#> 
#> $npar
#> [1] 1
#> 
#> $method
#> [1] "lm"
#> 
#> $gof
#> [1] "r.squared"
#> 
#> $joint_results
#> # A tibble: 3 x 5
#>   var     child mother child_perc mother_perc
#>   <fct>   <dbl>  <dbl>      <dbl>       <dbl>
#> 1 child  0      0.0116          0           1
#> 2 mother 0.0116 0               1           0
#> 3 SUM    0.0116 0.0116          1           1
#> 
#> attr(,"class")
#> [1] "part"

We can now see that both groups have almost the same amount of influence on the (R^2).

Bar Plots

To get a bar plot of the percentage independent effects, use plot_ghp():

plot_ghp(results_lm)

plot_ghp(results_gamlss) +
  ggplot2::scale_fill_grey()

Comparison with hier.part

Since 0.4.0, ghp is almost as fast as its counterpart hier.part, because the core partitioning was written with C++. A quick comparison:

hp <- function()
  hier.part::hier.part(india$stunting, dplyr::select(india,-stunting),
                       gof = "Rsqu", barplot = FALSE)
ghp <- function()
  ghp::ghp("stunting", india, method = "lm", gof = "r.squared")
microbenchmark::microbenchmark(hp, ghp)
#> Unit: nanoseconds
#>  expr min lq  mean median uq  max neval
#>    hp  29 30 56.78     31 32 2585   100
#>   ghp  29 30 39.26     31 32  801   100

This README.Rmd was run on:

date()
#> [1] "Wed Feb  6 10:41:55 2019"

About

An R package for general hierarchical partitioning, a method to measure the influence of variables on a goodness-of-fit

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published