squareupr is an R package that connects to the Square APIs (Connect v1 & v2).
- OAuth 2.0 (Single sign-on) and Personal Access Token Authentication
methods (
sq_auth()
) - v2 Locations Endpoint (
sq_list_locations()
,sq_get_location()
) - v2 Transactions Endpoint (
sq_list_transactions()
,sq_get_transaction()
) - v2 Customers Endpoint - CRUD (Create, Retrieve, Update, Delete)
methods for customers with:
sq_list_customers()
,sq_search_customers()
,sq_get_customer()
,sq_create_customer()
,sq_update_customer()
,sq_delete_customer()
- v1 Payments Endpoint (
sq_list_payments()
,sq_get_payment()
) - v1 Items Endpoint - CRUD (Create, Retrieve, Update, Delete) methods
for items with:
sq_list_items()
,sq_get_item()
,sq_create_item()
,sq_update_item()
,sq_delete_item()
- List v1 records (
sq_list_fees()
,sq_list_categories()
,sq_list_modifiers()
,sq_list_discounts()
)
# This package is not yet available on CRAN so you must install from GitHub
# install.packages("devtools")
devtools::install_github("StevenMMortimer/squareupr")
If you encounter a clear bug, please file a minimal reproducible example on GitHub.
First, load the squareupr package and authenticate. There are two ways to authenticate:
- Personal Access Token
- OAuth 2.0
library(dplyr)
library(squareupr)
# Using Personal Access Token (PAT)
sq_auth(personal_access_token = "sq-Th1s1sMyPers0nalAcessT0ken")
# Using OAuth 2.0 authentication
sq_auth()
NOTE: Before using OAuth 2.0 authentication it is necessary that you set up your own Connected App in the Square dashboard. An App ID and App Secret will be provided, then you will be able to plug into your script like so:
options(squareupr.app_id = "sq0-99-thisisatest99connected33app22id")
options(squareupr.app_secret = "sq0-Th1s1sMyAppS3cr3t")
sq_auth()
OAuth 2.0 credentials will be cached locally in a file entitled
".httr-oauth-squareupr"
in the current working directory so that a new
token is not needed each session.
Transactions are organized by location. With the v2 Locations endpoint
you can pull information regarding all locations first to obtain the
location IDs. Then with the sq_list_transactions()
function you can
provide the location and timeframe to search. The function defaults to
pulling transactions from the previous day using Sys.Date() - 1
. Once
you obtain the transactions the tenders
field lists all methods of
payment used to pay in the transaction.
# list all locations
our_locations <- sq_list_locations()
our_transactions <- sq_list_transactions(location = our_locations$id[2],
begin_time = as.Date('2019-07-09'),
end_time = as.Date('2019-07-10'))
our_transactions
#> # A tibble: 197 x 9
#> id location_id created_at tenders product client_id refunds
#> <chr> <chr> <chr> <list> <chr> <chr> <list>
#> 1 bu0b… DRDCJ2X8E2… 2019-07-1… <list … REGIST… BA6D16E9… <NULL>
#> 2 7qmX… DRDCJ2X8E2… 2019-07-0… <list … REGIST… B3ACC564… <NULL>
#> 3 fEg0… DRDCJ2X8E2… 2019-07-0… <list … REGIST… 117F4A34… <NULL>
#> 4 rMhg… DRDCJ2X8E2… 2019-07-0… <list … REGIST… 3CC0E3F7… <NULL>
#> 5 xFqx… DRDCJ2X8E2… 2019-07-0… <list … REGIST… 3E4CE781… <NULL>
#> 6 JVGY… DRDCJ2X8E2… 2019-07-0… <list … REGIST… 1739D76B… <NULL>
#> 7 9nKc… DRDCJ2X8E2… 2019-07-0… <list … REGIST… F511D38E… <NULL>
#> 8 JPvy… DRDCJ2X8E2… 2019-07-0… <list … REGIST… F38E64B3… <NULL>
#> 9 lH4U… DRDCJ2X8E2… 2019-07-0… <list … REGIST… 6ED7522B… <NULL>
#> 10 9joO… DRDCJ2X8E2… 2019-07-0… <list … REGIST… 0DF58C0E… <NULL>
#> # … with 187 more rows, and 2 more variables: reference_id <chr>,
#> # order_id <chr>
Once you pull data about transactions you can take the customer_id from
the transaction tenders
field and match that up with customer details.
In Square customers can be placed into groups that allow for the
analysis of transactions at a group-level.
# list customers created in the last 30 days
created_start <- format(Sys.Date() - 30, '%Y-%m-%dT00:00:00-00:00')
created_end <- format(Sys.Date(), '%Y-%m-%dT00:00:00-00:00')
our_customers <- sq_search_customers(query = list(filter=
list(created_at=
list(start_at=created_start,
end_at=created_end))))
our_customers$given_name <- "{HIDDEN}"
our_customers$family_name <- "{HIDDEN}"
our_customers %>% select(id, created_at, updated_at,
given_name, family_name, preferences, groups)
#> # A tibble: 3,245 x 7
#> id created_at updated_at given_name family_name preferences groups
#> <chr> <chr> <chr> <chr> <chr> <list> <list>
#> 1 K498FM… 2019-06-20… 2019-06-3… {HIDDEN} {HIDDEN} <named lis… <list…
#> 2 3AXCBD… 2019-07-10… 2019-07-1… {HIDDEN} {HIDDEN} <named lis… <list…
#> 3 CAA1WX… 2019-07-05… 2019-07-0… {HIDDEN} {HIDDEN} <named lis… <list…
#> 4 PRFAB2… 2019-06-19… 2019-06-1… {HIDDEN} {HIDDEN} <named lis… <list…
#> 5 NZ585Y… 2019-06-15… 2019-06-1… {HIDDEN} {HIDDEN} <named lis… <list…
#> 6 CT6TJE… 2019-07-02… 2019-07-0… {HIDDEN} {HIDDEN} <named lis… <list…
#> 7 T70ZBH… 2019-06-12… 2019-06-1… {HIDDEN} {HIDDEN} <named lis… <list…
#> 8 GP4YJZ… 2019-06-23… 2019-06-2… {HIDDEN} {HIDDEN} <named lis… <list…
#> 9 9SN9EG… 2019-07-06… 2019-07-0… {HIDDEN} {HIDDEN} <named lis… <list…
#> 10 JBJ5ZC… 2019-07-07… 2019-07-0… {HIDDEN} {HIDDEN} <named lis… <list…
#> # … with 3,235 more rows
# show the groups that each customer belongs to
# filter to the groups designated automatically by Square
sq_extract_cust_groups(our_customers) %>%
filter(grepl("^CQ689YH4KCJMY", groups.id))
#> # A tibble: 1,248 x 3
#> id groups.id groups.name
#> <chr> <chr> <chr>
#> 1 3AXCBD5Q5N260RPKKKBJW8348R CQ689YH4KCJMY.LOYALTY_ALL Loyalty Enrollees
#> 2 PRFAB2CABS4YCYQHHAPDQE5HHW CQ689YH4KCJMY.LOYAL Regulars
#> 3 PRFAB2CABS4YCYQHHAPDQE5HHW CQ689YH4KCJMY.LOYALTY_ALL Loyalty Enrollees
#> 4 T70ZBHDNXD3F4TY9GX7C4XVD98 CQ689YH4KCJMY.LOYAL Regulars
#> 5 9SN9EG2AP900PVTA59BWWFV4PW CQ689YH4KCJMY.REACHABLE Reachable
#> 6 9SN9EG2AP900PVTA59BWWFV4PW CQ689YH4KCJMY.LOYALTY_ALL Loyalty Enrollees
#> 7 KGVMB2R5K14RRJT3D4J6WAEMAM CQ689YH4KCJMY.LOYAL Regulars
#> 8 RVNVNEWGMH5SWZAQ21376P1RR8 CQ689YH4KCJMY.LOYAL Regulars
#> 9 RVNVNEWGMH5SWZAQ21376P1RR8 CQ689YH4KCJMY.REACHABLE Reachable
#> 10 F5AB5VQZVX034TGNNS3X6T9Q78 CQ689YH4KCJMY.REACHABLE Reachable
#> # … with 1,238 more rows
This application uses other open source software components. The authentication components are mostly verbatim copies of the routines established in the googlesheets package (https://github.com/jennybc/googlesheets). We acknowledge and are grateful to these developers for their contributions to open source.
This package makes requests best formatted to match what the APIs require as input. This articulation is not perfect and continued progress will be made to add and improve functionality. For details on formatting, attributes, and methods please refer to Square’s documentation as they are explained better there.
More information is also available on the pkgdown
site at
https://StevenMMortimer.github.io/squareupr.
Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.