Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix param parsing issue when layer/blob name exceeds 255 #4236

Merged
merged 2 commits into from
Oct 7, 2022

Conversation

ZhangGe6
Copy link
Contributor

@ZhangGe6 ZhangGe6 commented Oct 4, 2022

描述

在对.param解析时,由于为layer_nameblob_name预分配的长度为255,因此当它们的长度超过255时,会发生网络解析失败。

// src/net.cpp
char layer_name[256];
SCAN_VALUE("%255s", layer_type)
...
char bottom_name[256];
SCAN_VALUE("%255s", bottom_name)

复现

该问题可基于以下模型和步骤复现:

原始ONNX模型movenet.onnx,是由Google提供的预训练movenet tflitetensorflow-onnx转换得到(并进一步去除了前后处理算子)

  1. 使用onnx2ncnn转换为ncnn模型
onnx2ncnn movenet.onnx movenet.param movenet.bin

得到movenet.parammovenet.bin

  1. 使用ncnnoptimze优化模型
ncnnoptimize movenet.param movenet.bin movenet_opt.param movenet_opt.bin 0

此时会发生模型解析错误:

parse bottom_count failed
load_model error at layer 2, parameter file has inconsistent content.

修改

定位问题在于,第一步转化得到的movenet.param文件中,多数层的layer_name和blob_name超过255,导致第二步.param文件无法正常解析。故对onnx2ncnn.cpp做以下修改:

  1. 对每一个超出255长度的layer_name和blob_name进行截断;
  2. 截断的同时增加后缀截断编号trunc_idx,以避免截断后重名。总长维持在255。

结果

使用修改后的onnx2ncnn,保证生成的.param文件中,layer_name和blob_name长度均在255内。网络解析和ncnnoptimize可正常进行,得到的ncnn模型成功应用在项目:https://github.com/ZhangGe6/sports_counting_by_pose_estimation

@tencent-adm
Copy link
Member

tencent-adm commented Oct 4, 2022

CLA assistant check
All committers have signed the CLA.

@nihui
Copy link
Member

nihui commented Oct 6, 2022

请在你的 fork 的 ncnn 仓库中,启用 github action,以便 code-format 正常工作

@nihui nihui merged commit 3fce00b into Tencent:master Oct 7, 2022
@nihui
Copy link
Member

nihui commented Oct 7, 2022

Thanks for your contribution !

csukuangfj added a commit to csukuangfj/ncnn that referenced this pull request Dec 1, 2022
* remove duplicated newline (Tencent#4187)

* remove duplicated newline (Tencent#4188)

* optmize softmax arm neon (Tencent#4171)

* [docs] Fix typo (Tencent#4201)

* [Prelu x86] Finish intrinsic with elempack merged (Tencent#4177)

* changed size of images for pretty formatting of page (Tencent#4193)

* [Gelu x86] Finish intrinsic with elempack merged(fast version) (Tencent#4144)

* Finish the gelu x86 intrinsics
* Finish the fast tanh x86 simd impl

* Ignore .xmake directory (Tencent#4212)

* Bump pypa/cibuildwheel from 2.9.0 to 2.10.1 (Tencent#4207)

Bumps [pypa/cibuildwheel](https://github.com/pypa/cibuildwheel) from 2.9.0 to 2.10.1.
- [Release notes](https://github.com/pypa/cibuildwheel/releases)
- [Changelog](https://github.com/pypa/cibuildwheel/blob/main/docs/changelog.md)
- [Commits](pypa/cibuildwheel@v2.9.0...v2.10.1)

---
updated-dependencies:
- dependency-name: pypa/cibuildwheel
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* style: space alignment (Tencent#4217)

* Ignore CMakeSettings.json, the Visual Studio CMake schema file (Tencent#4228)

* RVV: use new interface for segment load/store & change word_type to size_t&add clang ci (part Tencent#4100) (Tencent#4118)

* RVV: use size_t for vl

* RVV: replace vsseg.v tuple type by using regex

-----

search:
vsseg([1-9])e(8|16|32)_v_(f|i|u)\2m(1|2|4|8)x\1\(([ -~]+), vcreate_\3\2m\4x\1\(([ -~]+)\), vl\);

substitute by:
vsseg$1e$2_v_$3$2m$4($5, $6, vl);

* RVV: replace vssseg.v tuple types by using regex

---

search:
vssseg([1-9])e(8|16|32)_v_f\2m1x\1\(([ -~]+), vcreate_f\2m1x\1\(([ -~]+)\), vl\);

substitute by:
vssseg$1e$2_v_f$2m1($3, $4, vl);

* RVV: replace vlseg.v tuple types in load/store

* RVV: replace vloxseg2ei32.v tuple types

* RVV: add a wrapper for old compilers

* RVV: add segment load/store wrapper in pakcing

* RVV: fix cmake test

* RVV: make clang happy by dropping VLAs in sgemm

* RVV: add clang cmake toolchain configure

* RVV: add clang ci, riscv64-unknown-linux-gnu

Co-authored-by: thelastlin <thelastlin@users.noreply.github.com>
Co-authored-by: nihui <shuizhuyuanluo@126.com>

* Bump pypa/cibuildwheel from 2.10.1 to 2.10.2 (Tencent#4220)

Bumps [pypa/cibuildwheel](https://github.com/pypa/cibuildwheel) from 2.10.1 to 2.10.2.
- [Release notes](https://github.com/pypa/cibuildwheel/releases)
- [Changelog](https://github.com/pypa/cibuildwheel/blob/main/docs/changelog.md)
- [Commits](pypa/cibuildwheel@v2.10.1...v2.10.2)

---
updated-dependencies:
- dependency-name: pypa/cibuildwheel
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* add c906 build ci (Tencent#4232)

* Add benchmark result of T-Head TH1520 (Tencent#4240)

`cpuinfo`: 

```
isa             : rv64imafdcvsu
mmu             : sv39
cpu-freq                : 1.848Ghz
cpu-icache              : 64KB
cpu-dcache              : 64KB
cpu-l2cache             : 1MB
cpu-tlb         : 1024 4-ways
cpu-cacheline           : 64Bytes
cpu-vector              : 0.7.1
```

Compiled with `-DCMAKE_TOOLCHAIN_FILE=../toolchains/c910-v240.toolchain.cmake -DCMAKE_BUILD_TYPE=release -DNCNN_OPENMP=OFF -DNCNN_THREADS=OFF -DNCNN_RUNTIME_CPU=OFF -DNCNN_RVV=ON -DNCNN_SIMPLEOCV=ON -DNCNN_BUILD_EXAMPLES=ON` 

Seems much worse than expected 🤔

* fix param parsing issue when layer/blob name exceeds 255 (Tencent#4236)

* fix param parsing issue when layer/blob name exceeds 255

* apply code-format changes

Co-authored-by: ZhangGe6 <ZhangGe6@users.noreply.github.com>

* Memory Pool Improvement For Variadic Sized Inputs (Tencent#4190)

* Simple miss count for better space efficiency

* Simple double ended greedy;

* Add size drop threshold setter;

* set workspace allocator cr to zero as we had some sort of recylcing capability :P

Co-authored-by: LinHeLurking <LinHeLurking@users.noreply.github.com>
Co-authored-by: nihuini <nihuini@tencent.com>

* docs: disable fp16 when wrong results encountered caused by overflow (Tencent#4248)

* pnnx math operation (Tencent#4251)

* more stricter armv7 fp16 and armv84 bf16 compiler check, fix Tencent#4147 fix Tencent#4222 (Tencent#4247)

* modified the param axes of expanddims in modelwriter (Tencent#4259)

* Add TH1520 (4*C910V) toolchain support.  (Tencent#4267)

* implement lstm proj_size (Tencent#4263)

* Optimize x86 DeformableConv2D (Tencent#4128)

* fix compile warning with gcc 9.1.0 including simplestl.h file (Tencent#4274)

* fix compile warning with gcc 9.1.0 including simplestl.h file

* apply code-format changes

Co-authored-by: veahow <veahow@users.noreply.github.com>

* add benchmark for rk3588 on rock5b (Tencent#4275)

* linux-x64-cpu-gcc on tencent ci

* implement layer feature disabled bit (Tencent#4278)

* add elu vulkan operator (Tencent#4280)

* fix tencent ci (Tencent#4277)

* implement GLU and pnnx conversion (Tencent#4283)

* Bump pypa/cibuildwheel from 2.10.2 to 2.11.1 (Tencent#4271)

Bumps [pypa/cibuildwheel](https://github.com/pypa/cibuildwheel) from 2.10.2 to 2.11.1.
- [Release notes](https://github.com/pypa/cibuildwheel/releases)
- [Changelog](https://github.com/pypa/cibuildwheel/blob/main/docs/changelog.md)
- [Commits](pypa/cibuildwheel@v2.10.2...v2.11.1)

---
updated-dependencies:
- dependency-name: pypa/cibuildwheel
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* fix pnnx softmax/normalize/slice negative axis conversion to ncnn (Tencent#4284)

* pnnx glu batchindex aware conversion (Tencent#4285)

* 1. Fix typo in readme (Tencent#4287)

* x86 sse2/avx2 optimization for convolution sgemm/winograd int8 family (Tencent#4286)

* pnnx skip dynamic size evaluation (Tencent#4291)

* Fix linux build error(Tencent#4265) (Tencent#4294)

Co-authored-by: wangyu <786794414@qq.com>

* general cpu feature detection on macos/ios, enable bf16 and i8mm on a15 a16 and m2 (Tencent#4300)

* x86 unified fc fp32/fp16s (Tencent#4303)

* more fma
* more transpose utility function

* Bump pypa/cibuildwheel from 2.11.1 to 2.11.2 (Tencent#4308)

Bumps [pypa/cibuildwheel](https://github.com/pypa/cibuildwheel) from 2.11.1 to 2.11.2.
- [Release notes](https://github.com/pypa/cibuildwheel/releases)
- [Changelog](https://github.com/pypa/cibuildwheel/blob/main/docs/changelog.md)
- [Commits](pypa/cibuildwheel@v2.11.1...v2.11.2)

---
updated-dependencies:
- dependency-name: pypa/cibuildwheel
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* pnnx pytorch 1.13 (Tencent#4314)

* fix Tencent#4315 (Tencent#4316)

* get_physical_cpu_count api family (Tencent#4302)

* get_physical_cpu_count api family

* set default to physical big cpu

* always treat smt core as big core

* is_smt_cpu

* get max freq mhz on windows

* windows thread affinity

* groupnorm 1d/2d/4d (Tencent#4312)

* fix slice end index, fix fp16 model weight alignment (Tencent#4317)

* tencent ci test-coverage pnnx (Tencent#4305)

* RVV: BatchNorm with fp16s(a) support (Tencent#4075)

* RVV: InstanceNorm with fp16s(a) support (Tencent#4078)

* fix ci pnnx build

* fold new_full and full_like (Tencent#4323)

* pnnx convert nn.Softmax2d (Tencent#4324)

* pnnx convert fold unfold (Tencent#4325)

* support yolov5 6.2 (Tencent#4328)

* implement ncnn fold and unfold (Tencent#4326)

* pnnx load gpu torchscript and reset device (Tencent#4330)

* fix:pnnx-softmax (Tencent#4333)

* pnnx save onnx zero (Tencent#4077)

* save foldable constants in file for reducing memory usage (Tencent#4337)

* match inplace slice copy pattern, rewrite copy uses (Tencent#4338)

* add vector optimization for loongarch64 (Tencent#4242)

* ci loongarch64 lsx (Tencent#4344)

* gridsample op support (Tencent#4288)



Co-authored-by: LRY89757 <LRY89757@users.noreply.github.com>
Co-authored-by: nihuini <nihuini@tencent.com>
Co-authored-by: nihui <shuizhuyuanluo@126.com>

* squeeze and expanddims 4d (Tencent#4346)

* implement MultiheadAttention kdim vdim (Tencent#4347)

* pnnx convert torch bitwise left_shift right_shift (Tencent#4349)

* pnnx fp16 option for ncnn and onnx weight type (Tencent#4350)

* pnnx fuse more function to module (Tencent#4351)

* pnnx fuse more function to module

* rename some pass name

* fuse adjacent reshape, fuse pad conv2d

* fuse pad conv1d

* split tests (Tencent#4354)

* Support mat.numpy() in Python (Tencent#4356)

* Fix typo in stb_image.h (Tencent#4358)

exitting -> exiting

* Fix windows-arm64 build for non-neon case (Tencent#4227)

* update release ci (Tencent#4359)

* update release ci

* find modern glslang

* parallel jobs on windows

* Fix c api allocator (Tencent#4360)

* add some c_api interfaces related to allocator setup.

* fix errors in allocator parameters in c_api.

* test c api allocator

Co-authored-by: zhangtongshe <yuyuyezi@vip.qq.com>

* update glslang (Tencent#4361)

* disable out-of-line atomics since ndk23+ for resolving linking issue with old ndk (Tencent#4362)

* I added one more project to the list of examples. (Tencent#4205)

* Dedicated to coloring black and white photographs.

* add example project link (Tencent#4365)

* fix(pybind11): build error (Tencent#4368)

* fix openmp affinity abort when cpu goes offline (Tencent#4370)

* Update release-python.yml

* small fixes

* unpack list input

* Remove LSTM2

* fix LSTM

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Menci <huanghaorui301@gmail.com>
Co-authored-by: luqiang guo <702572275@qq.com>
Co-authored-by: Lry89757 <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: magicse <magicse@users.noreply.github.com>
Co-authored-by: Zhuo Zhang <imzhuo@foxmail.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: 汤圆奶昔 <47135403+tonori@users.noreply.github.com>
Co-authored-by: Xavier Hsinyuan <me@lstlx.com>
Co-authored-by: thelastlin <thelastlin@users.noreply.github.com>
Co-authored-by: nihui <shuizhuyuanluo@126.com>
Co-authored-by: 柚木鉉 <740291272@qq.com>
Co-authored-by: Zhang Ge <sjtu.zg123@gmail.com>
Co-authored-by: ZhangGe6 <ZhangGe6@users.noreply.github.com>
Co-authored-by: LinHe <LinHe.Lurking@gmail.com>
Co-authored-by: LinHeLurking <LinHeLurking@users.noreply.github.com>
Co-authored-by: nihuini <nihuini@tencent.com>
Co-authored-by: MisakaBit <MisakaBit@gmail.com>
Co-authored-by: LiuYi-Up <73060646+LiuYi-Up@users.noreply.github.com>
Co-authored-by: 陸 言 <robinluaa@outlook.com>
Co-authored-by: miemie2013 <53960695+miemie2013@users.noreply.github.com>
Co-authored-by: Eahow Chen <15228088+veahow@users.noreply.github.com>
Co-authored-by: veahow <veahow@users.noreply.github.com>
Co-authored-by: li mengyang <hwdefcom@outlook.com>
Co-authored-by: Yoh <wpz_yoh@163.com>
Co-authored-by: Caize Wu <zepanwucai@gmail.com>
Co-authored-by: bestpower <wangyu117136@gmail.com>
Co-authored-by: wangyu <786794414@qq.com>
Co-authored-by: shaoshengsong <30892500+shaoshengsong@users.noreply.github.com>
Co-authored-by: WuJinxuan <2456510228@qq.com>
Co-authored-by: junchao-loongson <68935141+junchao-loongson@users.noreply.github.com>
Co-authored-by: LRY89757 <LRY89757@users.noreply.github.com>
Co-authored-by: Ikko Ashimine <eltociear@gmail.com>
Co-authored-by: zhangtongshe <yuyuyezi@vip.qq.com>
Co-authored-by: tpoisonooo <khj.application@aliyun.com>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants