Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions DIRECTORY.md
Original file line number Diff line number Diff line change
Expand Up @@ -174,6 +174,7 @@
* [MatrixExponentiationRecursive](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/MatrixExponentiationRecursive.js)
* [MatrixMultiplication](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/MatrixMultiplication.js)
* [MeanSquareError](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/MeanSquareError.js)
* [MidpointIntegration](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/MidpointIntegration.js)
* [ModularBinaryExponentiationRecursive](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/ModularBinaryExponentiationRecursive.js)
* [NumberOfDigits](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/NumberOfDigits.js)
* [Palindrome](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/Palindrome.js)
Expand Down
54 changes: 54 additions & 0 deletions Maths/MidpointIntegration.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
/**
*
* @title Midpoint rule for definite integral evaluation
* @author [ggkogkou](https://github.com/ggkogkou)
* @brief Calculate definite integrals with midpoint method
*
* @details The idea is to split the interval in a number N of intervals and use as interpolation points the xi
* for which it applies that xi = x0 + i*h, where h is a step defined as h = (b-a)/N where a and b are the
* first and last points of the interval of the integration [a, b].
*
* We create a table of the xi and their corresponding f(xi) values and we evaluate the integral by the formula:
* I = h * {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)}
*
* N must be > 0 and a<b. By increasing N, we also increase precision
*
* [More info link](https://tutorial.math.lamar.edu/classes/calcii/approximatingdefintegrals.aspx)
*
*/

function integralEvaluation (N, a, b, func) {
// Check if all restrictions are satisfied for the given N, a, b
if (!Number.isInteger(N) || Number.isNaN(a) || Number.isNaN(b)) { throw new TypeError('Expected integer N and finite a, b') }
if (N <= 0) { throw Error('N has to be >= 2') } // check if N > 0
if (a > b) { throw Error('a must be less or equal than b') } // Check if a < b
if (a === b) return 0 // If a === b integral is zero

// Calculate the step h
const h = (b - a) / N

// Find interpolation points
let xi = a // initialize xi = x0
const pointsArray = []

// Find the sum {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)}
let temp
for (let i = 0; i < N; i++) {
temp = func(xi + h / 2)
pointsArray.push(temp)
xi += h
}

// Calculate the integral
let result = h
temp = 0
for (let i = 0; i < pointsArray.length; i++) temp += pointsArray[i]

result *= temp

if (Number.isNaN(result)) { throw Error('Result is NaN. The input interval does not belong to the functions domain') }

return result
}

export { integralEvaluation }
16 changes: 16 additions & 0 deletions Maths/test/MidpointIntegration.test.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
import { integralEvaluation } from '../MidpointIntegration'

test('Should return the integral of f(x) = sqrt(x) in [1, 3] to be equal 2.797434', () => {
const result = integralEvaluation(10000, 1, 3, (x) => { return Math.sqrt(x) })
expect(Number(result.toPrecision(6))).toBe(2.79743)
})

test('Should return the integral of f(x) = sqrt(x) + x^2 in [1, 3] to be equal 11.46410161', () => {
const result = integralEvaluation(10000, 1, 3, (x) => { return Math.sqrt(x) + Math.pow(x, 2) })
expect(Number(result.toPrecision(10))).toBe(11.46410161)
})

test('Should return the integral of f(x) = log(x) + Pi*x^3 in [5, 12] to be equal 15809.9141543', () => {
const result = integralEvaluation(20000, 5, 12, (x) => { return Math.log(x) + Math.PI * Math.pow(x, 3) })
expect(Number(result.toPrecision(10))).toBe(15809.91415)
})