Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
57 changes: 43 additions & 14 deletions other/scoring_algorithm.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,29 +23,29 @@
"""


def procentual_proximity(
source_data: list[list[float]], weights: list[int]
) -> list[list[float]]:
def get_data(source_data: list[list[float]]) -> list[list[float]]:
"""
weights - int list
possible values - 0 / 1
0 if lower values have higher weight in the data set
1 if higher values have higher weight in the data set

>>> procentual_proximity([[20, 60, 2012],[23, 90, 2015],[22, 50, 2011]], [0, 0, 1])
[[20, 60, 2012, 2.0], [23, 90, 2015, 1.0], [22, 50, 2011, 1.3333333333333335]]
>>> get_data([[20, 60, 2012],[23, 90, 2015],[22, 50, 2011]])
[[20.0, 23.0, 22.0], [60.0, 90.0, 50.0], [2012.0, 2015.0, 2011.0]]
"""

# getting data
data_lists: list[list[float]] = []
for data in source_data:
for i, el in enumerate(data):
if len(data_lists) < i + 1:
data_lists.append([])
data_lists[i].append(float(el))
return data_lists


def calculate_each_score(
data_lists: list[list[float]], weights: list[int]
) -> list[list[float]]:
"""
>>> calculate_each_score([[20, 23, 22], [60, 90, 50], [2012, 2015, 2011]],
... [0, 0, 1])
[[1.0, 0.0, 0.33333333333333337], [0.75, 0.0, 1.0], [0.25, 1.0, 0.0]]
"""
score_lists: list[list[float]] = []
# calculating each score
for dlist, weight in zip(data_lists, weights):
mind = min(dlist)
maxd = max(dlist)
Expand All @@ -72,14 +72,43 @@ def procentual_proximity(

score_lists.append(score)

return score_lists


def generate_final_scores(score_lists: list[list[float]]) -> list[float]:
"""
>>> generate_final_scores([[1.0, 0.0, 0.33333333333333337],
... [0.75, 0.0, 1.0],
... [0.25, 1.0, 0.0]])
[2.0, 1.0, 1.3333333333333335]
"""
# initialize final scores
final_scores: list[float] = [0 for i in range(len(score_lists[0]))]

# generate final scores
for slist in score_lists:
for j, ele in enumerate(slist):
final_scores[j] = final_scores[j] + ele

return final_scores


def procentual_proximity(
source_data: list[list[float]], weights: list[int]
) -> list[list[float]]:
"""
weights - int list
possible values - 0 / 1
0 if lower values have higher weight in the data set
1 if higher values have higher weight in the data set

>>> procentual_proximity([[20, 60, 2012],[23, 90, 2015],[22, 50, 2011]], [0, 0, 1])
[[20, 60, 2012, 2.0], [23, 90, 2015, 1.0], [22, 50, 2011, 1.3333333333333335]]
"""

data_lists = get_data(source_data)
score_lists = calculate_each_score(data_lists, weights)
final_scores = generate_final_scores(score_lists)

# append scores to source data
for i, ele in enumerate(final_scores):
source_data[i].append(ele)
Expand Down