Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions app/build.gradle.kts
Original file line number Diff line number Diff line change
Expand Up @@ -83,6 +83,11 @@ dependencies {

// ML Kit for Barcode/QR scanning
implementation(libs.barcode.scanning)

// TFLite
implementation(libs.tflite.task.vision)
implementation(libs.tflite.gpu)
implementation(libs.tflite.gpu.delegate)
}


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -27,10 +27,10 @@ import androidx.compose.ui.unit.dp
import androidx.lifecycle.compose.LocalLifecycleOwner
import androidx.lifecycle.viewmodel.compose.viewModel
import co.stonephone.stonecamera.plugins.AspectRatioPlugin
import co.stonephone.stonecamera.plugins.DebugPlugin
import co.stonephone.stonecamera.plugins.FlashPlugin
import co.stonephone.stonecamera.plugins.FocusBasePlugin
import co.stonephone.stonecamera.plugins.PinchToZoomPlugin
import co.stonephone.stonecamera.plugins.PortraitModePlugin
import co.stonephone.stonecamera.plugins.QRScannerPlugin
import co.stonephone.stonecamera.plugins.SettingLocation
import co.stonephone.stonecamera.plugins.TapToFocusPlugin
Expand All @@ -48,6 +48,7 @@ val shootModes = arrayOf("Photo", "Video")
// ZoomBar depends on ZoomBase, etc.
val PLUGINS = listOf(
QRScannerPlugin(),
PortraitModePlugin(),
ZoomBasePlugin(),
ZoomBarPlugin(),
FocusBasePlugin(),
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
package co.stonephone.stonecamera.plugins

import android.annotation.SuppressLint
import android.graphics.Bitmap
import android.media.Image
import android.os.Build
import android.util.Log
import androidx.annotation.RequiresApi
import androidx.camera.core.ImageAnalysis
import androidx.camera.core.ImageProxy
import co.stonephone.stonecamera.MyApplication
import co.stonephone.stonecamera.StoneCameraViewModel
import co.stonephone.stonecamera.utils.ImageSegmentationUtils
import co.stonephone.stonecamera.utils.ImageSegmentationUtils.SegmentationListener
import kotlinx.coroutines.CompletableDeferred
import org.tensorflow.lite.task.vision.segmenter.Segmentation

class PortraitModePlugin: IPlugin, SegmentationListener {
override val id: String = "portraitModePlugin"
override val name: String = "Portrait Mode"

private lateinit var imageSegmentationUtils: ImageSegmentationUtils
private lateinit var bitmapBuffer: Bitmap
private var imageAnalyzer: ImageAnalysis? = null

override fun initialize(viewModel: StoneCameraViewModel) {
println("Test");
imageSegmentationUtils = ImageSegmentationUtils(
context = MyApplication.getAppContext(),
imageSegmentationListener = this
)
}


@RequiresApi(Build.VERSION_CODES.Q)
@SuppressLint("RestrictedApi")
override val onImageAnalysis: ((StoneCameraViewModel, ImageProxy, Image) -> CompletableDeferred<Unit>)? =
{ _: StoneCameraViewModel,
imageProxy: ImageProxy,
image: Image
->
println("Test")
Log.e("Test", "in here")
val deferred = CompletableDeferred<Unit>()

if (!::bitmapBuffer.isInitialized) {
// The image rotation and RGB image buffer are initialized only once
// the analyzer has started running
bitmapBuffer = Bitmap.createBitmap(
image.width,
image.height,
Bitmap.Config.ARGB_8888
)
}

segmentImage(imageProxy)

deferred
}

//TODO Image vs imageproxy
@RequiresApi(Build.VERSION_CODES.Q)
private fun segmentImage(image: ImageProxy) {
// Copy out RGB bits to the shared bitmap buffer
image.use { bitmapBuffer.copyPixelsFromBuffer(image.planes[0].buffer) }

val imageRotation = image.imageInfo.rotationDegrees
// Pass Bitmap and rotation to the image segmentation helper for processing and segmentation
imageSegmentationUtils.segment(bitmapBuffer, imageRotation)
}

override val settings: List<PluginSetting> = emptyList()

override fun onError(error: String) {
Log.e("Segmentation", "Failed segmentation");
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This reminds me, we need a plugin-level way to report errors. Added to this doc: https://docs.google.com/document/d/1Au_AgqrLhc9gncNjVfwruoPNTf7PF1eU3tfQZcwS17o/edit?tab=t.xp8jea3nq6j

}

override fun onResults(
results: List<Segmentation>?,
inferenceTime: Long,
imageHeight: Int,
imageWidth: Int
) {
Log.e("Segmentation", results.toString());
TODO("Not yet implemented")

//Segmentation has been complete. Can update UI to place segments on the screen.
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,136 @@
package co.stonephone.stonecamera.utils

import android.content.Context
import android.graphics.Bitmap
import android.os.Build
import android.os.SystemClock
import android.util.Log
import androidx.annotation.RequiresApi
import org.tensorflow.lite.gpu.CompatibilityList
import org.tensorflow.lite.support.image.ImageProcessor
import org.tensorflow.lite.support.image.TensorImage
import org.tensorflow.lite.support.image.ops.Rot90Op
import org.tensorflow.lite.task.core.BaseOptions
import org.tensorflow.lite.task.vision.segmenter.ImageSegmenter
import org.tensorflow.lite.task.vision.segmenter.OutputType
import org.tensorflow.lite.task.vision.segmenter.Segmentation

class ImageSegmentationUtils(
var numThreads: Int = 2,
var currentDelegate: Int = 0,
val context: Context,
val imageSegmentationListener: SegmentationListener?
) {
private var imageSegmenter: ImageSegmenter? = null

init {
setupImageSegmenter()
}

fun clearImageSegmenter() {
imageSegmenter = null
}

private fun setupImageSegmenter() {
// Create the base options for the segment
val optionsBuilder =
ImageSegmenter.ImageSegmenterOptions.builder()

// Set general segmentation options, including number of used threads
val baseOptionsBuilder = BaseOptions.builder().setNumThreads(numThreads)

// Use the specified hardware for running the model. Default to CPU
when (currentDelegate) {
DELEGATE_CPU -> {
// Default
}

DELEGATE_GPU -> {
if (CompatibilityList().isDelegateSupportedOnThisDevice) {
baseOptionsBuilder.useGpu()
} else {
imageSegmentationListener?.onError("GPU is not supported on this device")
}
}

DELEGATE_NNAPI -> {
baseOptionsBuilder.useNnapi()
}
}

optionsBuilder.setBaseOptions(baseOptionsBuilder.build())

/*
CATEGORY_MASK is being specifically used to predict the available objects
based on individual pixels in this sample. The other option available for
OutputType, CONFIDENCE_MAP, provides a gray scale mapping of the image
where each pixel has a confidence score applied to it from 0.0f to 1.0f
*/
optionsBuilder.setOutputType(OutputType.CATEGORY_MASK)
try {
imageSegmenter =
ImageSegmenter.createFromFileAndOptions(
context,
MODEL_DEEPLABV3,
optionsBuilder.build()
)
} catch (e: IllegalStateException) {
imageSegmentationListener?.onError(
"Image segmentation failed to initialize. See error logs for details"
)
Log.e(TAG, "TFLite failed to load model with error: " + e.message)
}
}

@RequiresApi(Build.VERSION_CODES.Q)
fun segment(image: Bitmap, imageRotation: Int) {

if (imageSegmenter == null) {
setupImageSegmenter()
}

// Inference time is the difference between the system time at the start and finish of the
// process
var inferenceTime = SystemClock.uptimeMillis()

// Create preprocessor for the image.
// See https://www.tensorflow.org/lite/inference_with_metadata/
// lite_support#imageprocessor_architecture
val imageProcessor =
ImageProcessor.Builder()
.add(Rot90Op(-imageRotation / 90))
.build()

// Preprocess the image and convert it into a TensorImage for segmentation.
val tensorImage = imageProcessor.process(TensorImage.fromBitmap(image))

val segmentResult = imageSegmenter?.segment(tensorImage)
inferenceTime = SystemClock.uptimeMillis() - inferenceTime

imageSegmentationListener?.onResults(
segmentResult,
inferenceTime,
tensorImage.height,
tensorImage.width
)
}

interface SegmentationListener {
fun onError(error: String)
fun onResults(
results: List<Segmentation>?,
inferenceTime: Long,
imageHeight: Int,
imageWidth: Int
)
}

companion object {
const val DELEGATE_CPU = 0
const val DELEGATE_GPU = 1
const val DELEGATE_NNAPI = 2
const val MODEL_DEEPLABV3 = "deeplabv3.tflite"

private const val TAG = "Image Segmentation Helper"
}
}
5 changes: 5 additions & 0 deletions gradle/libs.versions.toml
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,8 @@ material3version = "1.3.1"
junitJunit = "4.12"
monitor = "1.7.2"
junitKtx = "1.2.1"
tflite = "0.4.4"
tflite-gpu = "2.16.1"

[libraries]
accompanist-permissions = { module = "com.google.accompanist:accompanist-permissions", version.ref = "accompanistPermissions" }
Expand All @@ -38,6 +40,9 @@ coil-compose = { module = "io.coil-kt:coil-compose", version.ref = "coilCompose"
junit-junit = { group = "junit", name = "junit", version.ref = "junitJunit" }
androidx-monitor = { group = "androidx.test", name = "monitor", version.ref = "monitor" }
androidx-junit-ktx = { group = "androidx.test.ext", name = "junit-ktx", version.ref = "junitKtx" }
tflite-task-vision = { group = "org.tensorflow", name = "tensorflow-lite-task-vision", version.ref = "tflite"}
tflite-gpu-delegate = { group = "org.tensorflow", name = "tensorflow-lite-gpu-delegate-plugin", version.ref = "tflite"}
tflite-gpu = { group = "org.tensorflow", name = "tensorflow-lite-gpu", version.ref = "tflite-gpu"}

[plugins]
android-application = { id = "com.android.application", version.ref = "agp" }
Expand Down
Loading