-
Notifications
You must be signed in to change notification settings - Fork 29
/
package.scala
578 lines (575 loc) · 27.5 KB
/
package.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
package com.thoughtworks
/** This project, '''Dsl.scala''', is a framework to create embedded '''D'''omain-'''S'''pecific '''L'''anguages.
*
* DSLs written in '''Dsl.scala''' are collaborative with others DSLs and Scala control flows.
* DSL users can create functions that contains interleaved DSLs implemented by different vendors,
* along with ordinary Scala control flows.
*
* We also provide some built-in DSLs for asynchronous programming, collection manipulation,
* and adapters to [[scalaz.Monad]] or [[cats.Monad]].
* Those built-in DSLs can be used as a replacement of
* [[https://docs.scala-lang.org/tour/for-comprehensions.html `for` comprehension]],
* [[https://github.com/scala/scala-continuations scala-continuations]],
* [[https://github.com/scala/scala-async scala-async]],
* [[http://monadless.io/ Monadless]],
* [[https://github.com/pelotom/effectful effectful]]
* and [[https://github.com/ThoughtWorksInc/each ThoughtWorks Each]].
*
* = Introduction =
*
* == Reinventing control flow in DSL ==
*
* Embedded DSLs usually consist of a set of domain-specific keywords,
* which can be embedded in the their hosting languages.
*
* Ideally, a domain-specific keyword should be an optional extension,
* which can be present everywhere in the ordinary control flow of the hosting language.
* However, previous embedded DSLs usually badly interoperate with hosting language control flow.
* Instead, they reinvent control flow in their own DSL.
*
* For example, the [[https://akka.io akka]] provides
* [[https://doc.akka.io/docs/akka/2.5.10/fsm.html a DSL to create finite-state machines]],
* which consists of some domain-specific keywords like [[akka.actor.FSM!.when when]],
* [[akka.actor.FSM!.goto goto]] and [[akka.actor.FSM!.stay stay]].
* Unfortunately, you cannot embedded those keywords into your ordinary `if` / `while` / `try` control flows,
* because Akka's DSL is required to be split into small closures,
* preventing ordinary control flows from crossing the boundary of those closures.
*
* TensorFlow's [[https://www.tensorflow.org/api_guides/python/control_flow_ops control flow operations]] and
* Caolan's [[https://github.com/caolan/async async]] library are examples of reinventing control flow
* in languages other than Scala.
*
* == Monad: the generic interface of control flow ==
*
* It's too trivial to reinvent the whole set of control flows for each DSL.
* A simpler approach is only implementing a minimal interface required for control flows for each domain,
* while the syntax of other control flow operations are derived from the interface, shared between different domains.
*
* Since [[https://www.sciencedirect.com/science/article/pii/0890540191900524 computation can be represented as monads]],
* some libraries use monad as the interface of control flow,
* including [[scalaz.Monad]], [[cats.Monad]] and [[com.twitter.algebird.Monad]].
* A DSL author only have to implement two abstract method in [[scalaz.Monad]],
* and all the derived control flow operations
* like [[scalaz.syntax.MonadOps.whileM]], [[scalaz.syntax.BindOps.ifM]] are available.
* In addition, those monadic data type can be created and composed
* from Scala's built-in [[https://docs.scala-lang.org/tour/for-comprehensions.html `for` comprehension]].
*
* For example, you can use the same [[scalaz.syntax syntax]] or `for` comprehension
* to create [[org.scalacheck.Gen random value generators]]
* and [[com.thoughtworks.binding.Binding data-binding expressions]],
* as long as there are [[scalaz.Monad Monad]] instances
* for [[org.scalacheck.Gen]] and [[com.thoughtworks.binding.Binding]] respectively.
*
* Although the effort of creating a DSL is minimized with the help of monads,
* the syntax is still unsatisfactory.
* Methods in `MonadOps` still seem like a duplicate of ordinary control flow,
* and `for` comprehension supports only a limited set of functionality in comparison to ordinary control flows.
* `if` / `while` / `try` and other block expressions cannot appear in the enumerator clause of `for` comprehension.
*
* == Enabling ordinary control flows in DSL via macros ==
*
* An idea to avoid inconsistency between domain-specific control flow and ordinary control flow is
* converting ordinary control flow to domain-specific control flow at compiler time.
*
* For example, [[https://github.com/scala/scala-async scala.async]] provides a macro
* to generate asynchronous control flow.
* The users just wrap normal synchronous code in a [[scala.async.Async.async async]] block,
* and it runs asynchronously.
*
* This approach can be generalized to any monadic data types.
* [[https://github.com/ThoughtWorksInc/each ThoughtWorks Each]], [[http://monadless.io/ Monadless]]
* and [[https://github.com/pelotom/effectful effectful]] are macros
* that convert ordinary control flow to monadic control flow.
*
* For example, with the help of [[https://github.com/ThoughtWorksInc/each ThoughtWorks Each]],
* [[https://github.com/ThoughtWorksInc/Binding.scala Binding.scala]] is used to create reactive HTML templating
* from ordinary Scala control flow.
*
* == Delimited continuations ==
*
* Another generic interface of control flow is continuation,
* which is known as
* [[https://www.schoolofhaskell.com/user/dpiponi/the-mother-of-all-monads the mother of all monads]],
* where control flows in specific domain can be supported by specific final result types of continuations.
*
* [[https://github.com/scala/scala-continuations scala-continuations]]
* and [[https://github.com/qifun/stateless-future stateless-future]]
* are two delimited continuation implementations.
* Both projects can convert ordinary control flow to continuation-passing style closure chains at compiler time.
*
* For example, [[https://github.com/qifun/stateless-future-akka stateless-future-akka]],
* based on `stateless-future`,
* provides a special final result type for akka actors.
* Unlike [[akka.actor.FSM]]'s inconsistent control flows, users can create complex finite-state machines
* from simple ordinary control flows along with `stateless-future-akka`'s domain-specific keyword `nextMessage`.
*
* == Collaborative DSLs ==
*
* All the above approaches lack of the ability to collaborate with other DSLs.
* Each of the above DSLs can be only exclusively enabled in a code block.
* For example,
* [[https://github.com/scala/scala-continuations scala-continuations]]
* enables calls to `@cps` method in [[scala.util.continuations.reset]] blocks,
* and [[https://github.com/ThoughtWorksInc/each ThoughtWorks Each]]
* enables the magic `each` method for [[scalaz.Monad]] in [[com.thoughtworks.each.Monadic.monadic]] blocks.
* It is impossible to enable both DSLs in one function.
*
* This [[https://github.com/ThoughtWorksInc/Dsl.scala Dsl.scala]] project resolves this problem.
*
* We also provide adapters to all the above kinds of DSLs.
* Instead of switching different DSLs between different functions,
* DSL users can use multiple DSLs together in one function,
* by simply adding [[com.thoughtworks.dsl.compilerplugins.BangNotation our Scala compiler plug-in]].
*
* @example Suppose you want to create an [[https://en.wikipedia.org/wiki/Xorshift Xorshift]] random number generator.
*
* The generated numbers should be stored in a lazily evaluated infinite [[scala.collection.immutable.Stream Stream]],
* which can be implemented as a recursive function that produce the next random number in each iteration,
* with the help of our built-in domain-specific keyword [[com.thoughtworks.dsl.keywords.Yield Yield]].
*
* {{{
* import com.thoughtworks.dsl.Dsl.reset
* import com.thoughtworks.dsl.keywords.Yield
*
* def xorshiftRandomGenerator(seed: Int): Stream[Int] = {
* val tmp1 = seed ^ (seed << 13)
* val tmp2 = tmp1 ^ (tmp1 >>> 17)
* val tmp3 = tmp2 ^ (tmp2 << 5)
* !Yield(tmp3)
* xorshiftRandomGenerator(tmp3)
* }: @reset
*
* val myGenerator = xorshiftRandomGenerator(seed = 123)
*
* myGenerator(0) should be(31682556)
* myGenerator(1) should be(-276305998)
* myGenerator(2) should be(2101636938)
* }}}
*
* [[com.thoughtworks.dsl.keywords.Yield Yield]] is an keyword to produce a value
* for a lazily evaluated [[scala.collection.immutable.Stream Stream]].
* That is to say, [[scala.collection.immutable.Stream Stream]] is the domain
* where the DSL [[com.thoughtworks.dsl.keywords.Yield Yield]] can be used,
* which was interpreted like the `yield` keyword in C#, JavaScript or Python.
*
* Note that the body of `xorshiftRandomGenerator` is annotated as `@[[Dsl.reset reset]]`,
* which enables the [[Dsl.Keyword#unary_$bang !-notation]] in the code block.
*
* Alternatively, you can also use the
* [[com.thoughtworks.dsl.compilerplugins.ResetEverywhere ResetEverywhere]] compiler plug-in,
* which enable [[Dsl.Keyword#unary_$bang !-notation]] for every methods and functions.
* @example [[com.thoughtworks.dsl.keywords.Yield Yield]] and [[scala.collection.immutable.Stream Stream]]
* can be also used for logging.
*
* Suppose you have a function to parse an JSON file,
* you can append log records to a [[scala.collection.immutable.Stream Stream]] during parsing.
*
* {{{
* import com.thoughtworks.dsl.keywords.Yield
* import com.thoughtworks.dsl.Dsl.!!
* import scala.util.parsing.json._
* def parseAndLog1(jsonContent: String, defaultValue: JSONType): Stream[String] !! JSONType = { (callback: JSONType => Stream[String]) =>
* !Yield(s"I am going to parse the JSON text $jsonContent...")
* JSON.parseRaw(jsonContent) match {
* case Some(json) =>
* !Yield(s"Succeeded to parse $jsonContent")
* callback(json)
* case None =>
* !Yield(s"Failed to parse $jsonContent")
* callback(defaultValue)
* }
* }
* }}}
*
* Since the function produces both a [[scala.util.parsing.json.JSONType JSONType]]
* and a [[scala.collection.immutable.Stream Stream]] of logs,
* the return type is now `Stream[String] !! JSONType`,
* where [[com.thoughtworks.dsl.Dsl.$bang$bang !!]] is
* `(JSONType => Stream[String]) => Stream[String]`,
* an alias of continuation-passing style function,
* indicating it produces both a [[scala.util.parsing.json.JSONType JSONType]] and a [[scala.Stream Stream]] of logs.
*
* {{{
* val logs = parseAndLog1(""" { "key": "value" } """, JSONArray(Nil)) { json =>
* json should be(JSONObject(Map("key" -> "value")))
* Stream("done")
* }
*
* logs should be(Stream("I am going to parse the JSON text { \"key\": \"value\" } ...",
* "Succeeded to parse { \"key\": \"value\" } ",
* "done"))
* }}}
* @example The closure in the previous example can be simplified with the help of Scala's placeholder syntax:
*
* {{{
* import com.thoughtworks.dsl.keywords.Yield
* import com.thoughtworks.dsl.Dsl.!!
* import scala.util.parsing.json._
* def parseAndLog2(jsonContent: String, defaultValue: JSONType): Stream[String] !! JSONType = _ {
* !Yield(s"I am going to parse the JSON text $jsonContent...")
* JSON.parseRaw(jsonContent) match {
* case Some(json) =>
* !Yield(s"Succeeded to parse $jsonContent")
* json
* case None =>
* !Yield(s"Failed to parse $jsonContent")
* defaultValue
* }
* }
*
* val logs = parseAndLog2(""" { "key": "value" } """, JSONArray(Nil)) { json =>
* json should be(JSONObject(Map("key" -> "value")))
* Stream("done")
* }
*
* logs should be(Stream("I am going to parse the JSON text { \"key\": \"value\" } ...",
* "Succeeded to parse { \"key\": \"value\" } ",
* "done"))
* }}}
*
* Note that `parseAndLog2` is equivelent to `parseAndLog1`.
* The code block after underscore is still inside a function whose return type is `Stream[String]`.
* @example Instead of manually create the continuation-passing style function,
* you can also create the function from a [[com.thoughtworks.dsl.Dsl.$bang$bang !!]] block.
*
* {{{
* import com.thoughtworks.dsl.keywords.Yield
* import com.thoughtworks.dsl.Dsl.!!
* import scala.util.parsing.json._
* def parseAndLog3(jsonContent: String, defaultValue: JSONType): Stream[String] !! JSONType = !! {
* !Yield(s"I am going to parse the JSON text $jsonContent...")
* JSON.parseRaw(jsonContent) match {
* case Some(json) =>
* !Yield(s"Succeeded to parse $jsonContent")
* json
* case None =>
* !Yield(s"Failed to parse $jsonContent")
* defaultValue
* }
* }
*
* val logs = parseAndLog3(""" { "key": "value" } """, JSONArray(Nil)) { json =>
* json should be(JSONObject(Map("key" -> "value")))
* Stream("done")
* }
*
* logs should be(Stream("I am going to parse the JSON text { \"key\": \"value\" } ...",
* "Succeeded to parse { \"key\": \"value\" } ",
* "done"))
* }}}
*
* Unlike the `parseAndLog2` example, The code inside a `!!` block is not in an anonymous function.
* Instead, they are directly inside `parseAndLog3`, whose return type is `Stream[String] !! JSONType`.
*
* That is to say,
* the domain of those [[com.thoughtworks.dsl.keywords.Yield Yield]] keywords in `parseAndLog3`
* is not `Stream[String]` any more, the domain is `Stream[String] !! JSONType` now,
* which supports more keywords, which you will learnt from the next examples,
* than the `Stream[String]` domain.
* @example [[com.thoughtworks.dsl.Dsl.$bang$bang !!]], or [[com.thoughtworks.dsl.Dsl.Continuation Continuation]],
* is the preferred approach to enable multiple domains in one function.
*
* For example, you can create a function that
* lazily read each line of a [[java.io.BufferedReader BufferedReader]] to a [[scala.Stream Stream]],
* automatically close the [[java.io.BufferedReader BufferedReader]] after reading the last line,
* and finally return the total number of lines in the `Stream[String] !! Throwable !! Int` domain.
*
* {{{
* import com.thoughtworks.dsl.Dsl.!!
* import com.thoughtworks.dsl.keywords.Using
* import com.thoughtworks.dsl.keywords.Yield
* import com.thoughtworks.dsl.keywords.Shift._
* import java.io._
*
* def readerToStream(createReader: () => BufferedReader): Stream[String] !! Throwable !! Int = !! {
* val reader = !Using(createReader())
*
* def loop(lineNumber: Int): Stream[String] !! Throwable !! Int = _ {
* reader.readLine() match {
* case null =>
* lineNumber
* case line =>
* !Yield(line)
* !loop(lineNumber + 1)
* }
* }
*
* !loop(0)
* }
* }}}
*
* `!loop(0)` is a shortcut of `!Shift(loop(0))`,
* because there is [[keywords.Shift.implicitShift an implicit conversion]]
* from `Stream[String] !! Throwable !! Int` to a [[keywords.Shift]] case class,
* which is similar to the `await` keyword in JavaScript, Python or C#.
*
* A type like `A !! B !! C` means a domain-specific value of type `C` in the domain of `A` and `B`.
* When `B` is [[scala.Throwable Throwable]], the [[keywords.Using]]
* is available, which will close a resource when exiting the current function.
*
* {{{
* import scala.util.Success
*
* var isClosed = false
* def createReader() = {
* new BufferedReader(new StringReader("line1\nline2\nline3")) {
* override def close() = {
* isClosed = true
* }
* }
* }
*
* val stream = readerToStream(createReader _) { numberOfLines: Int =>
* numberOfLines should be(3)
*
* Function.const(Stream.empty)(_)
* } { e: Throwable =>
* throw new AssertionError("Unexpected exception during readerToStream", e)
* }
*
* isClosed should be(false)
* stream should be(Stream("line1", "line2", "line3"))
* isClosed should be(true)
* }}}
* @example If you don't need to collaborate to [[scala.Stream Stream]] or other domains,
* you can use `TailRec[Unit] !! Throwable !! A`
* or the alias [[domains.task.Task]] as the return type,
* which can be used as an asynchronous task that support RAII,
* as a higher-performance replacement of
* [[scala.concurrent.Future]], [[scalaz.concurrent.Task]] or [[monix.eval.Task]].
*
* Also, there are some keywords in [[keywords.AsynchronousIo]]
* to asynchronously perform Java NIO.2 IO operations in a [[domains.task.Task]] domain.
* For example, you can implement an HTTP client from those keywords.
*
* {{{
* import com.thoughtworks.dsl.domains.task._
* import com.thoughtworks.dsl.keywords._
* import com.thoughtworks.dsl.keywords.Shift.implicitShift
* import com.thoughtworks.dsl.keywords.AsynchronousIo._
* import java.io._
* import java.net._
* import java.nio._, channels._
*
* def readAll(channel: AsynchronousByteChannel, destination: ByteBuffer): Task[Unit] = _ {
* if (destination.remaining > 0) {
* val numberOfBytesRead: Int = !Read(channel, destination)
* numberOfBytesRead match {
* case -1 =>
* case _ => !readAll(channel, destination)
* }
* } else {
* throw new IOException("The response is too big to read.")
* }
* }
*
* def writeAll[Domain](channel: AsynchronousByteChannel, destination: ByteBuffer): Task[Unit] = _ {
* while (destination.remaining > 0) {
* !Write(channel, destination)
* }
* }
*
* def httpClient(url: URL): Task[String] = _ {
* val socket = AsynchronousSocketChannel.open()
* try {
* val port = if (url.getPort == -1) 80 else url.getPort
* val address = new InetSocketAddress(url.getHost, port)
* !AsynchronousIo.Connect(socket, address)
* val request = ByteBuffer.wrap(s"GET ${url.getPath} HTTP/1.1\r\nHost:${url.getHost}\r\nConnection:Close\r\n\r\n".getBytes)
* !writeAll(socket, request)
* val response = ByteBuffer.allocate(100000)
* !readAll(socket, response)
* response.flip()
* io.Codec.UTF8.decoder.decode(response).toString
* } finally {
* socket.close()
* }
* }
* }}}
*
* The usage of `Task` is similar to previous examples.
* You can check the result or exception in asynchronous handlers.
*
* But we also provides [[com.thoughtworks.dsl.domains.task.Task.blockingAwait blockingAwait]] and some other utilities
* at [[domains.task.Task]].
*
* {{{
* import com.thoughtworks.dsl.domains.task.Task.blockingAwait
*
* val url = new URL("http://localhost:4001/ping")
* val fileContent = blockingAwait(httpClient(url))
* fileContent should startWith("HTTP/1.1 200 OK")
* }}}
*
* Another useful keyword for asynchronous programming is [[com.thoughtworks.dsl.keywords.Fork Fork]],
* which duplicate the current control flow, and the child control flows are executed in parallel,
* similar to the POSIX `fork` system call.
*
* [[com.thoughtworks.dsl.keywords.Fork Fork]] should be used inside
* a [[com.thoughtworks.dsl.domains.task.Task#join]] block, which collects the result of each forked control flow.
*
* {{{
* import com.thoughtworks.dsl.keywords.Fork
* import com.thoughtworks.dsl.keywords.Return
* val Urls = Seq(
* new URL("http://localhost:4001/ping"),
* new URL("http://localhost:4001/pong")
* )
* def parallelTask: Task[Seq[String]] = {
* val url = !Fork(Urls)
* !Return(!httpClient(url))
* }
*
* inside(blockingAwait(parallelTask)) {
* case Seq(fileContent0, fileContent1) =>
* fileContent0 should startWith("HTTP/1.1 200 OK")
* fileContent1 should startWith("HTTP/1.1 200 OK")
* }
* }}}
* @example The built-in [[keywords.Monadic]] can be used as an adaptor
* to [[scalaz.Monad]] and [[scalaz.MonadTrans]],
* to create monadic code from imperative syntax,
* similar to the !-notation in Idris.
*
* For example, suppose you are creating a program that counts lines of code under a directory.
* You want to store the result in a [[scala.Stream Stream]] of line count of each file.
*
* {{{
* import java.io.File
* import com.thoughtworks.dsl.keywords.Monadic
* import com.thoughtworks.dsl.domains.scalaz._
* import scalaz.std.stream._
*
* def countMonadic(file: File): Stream[Int] = Stream {
* if (file.isDirectory) {
* file.listFiles() match {
* case null =>
* // Unable to open `file`
* !Monadic(Stream.empty[Int])
* case children =>
* // Import this implicit conversion to omit the Monadic keyword
* import com.thoughtworks.dsl.keywords.Monadic.implicitMonadic
*
* val child: File = !children.toStream
* !countMonadic(child)
* }
* } else {
* scala.io.Source.fromFile(file).getLines.size
* }
* }
*
*
* val countCurrentSourceFile = countMonadic(new File(sourcecode.File()))
*
* inside(countCurrentSourceFile) {
* case Stream(lineCount) =>
* lineCount should be > 0
* }
*
* }}}
* @example The previous code requires a `toStream` conversion on `children`,
* because `children`'s type `Array[File]` does not fit the `F` type parameter in [[scalaz.Monad.bind]].
*
* The conversion can be avoided if using [[scala.collection.generic.CanBuildFrom CanBuildFrom]] type class
* instead of monads.
*
* We provide a [[com.thoughtworks.dsl.keywords.Each Each]]
* keyword to extract each element in a Scala collection.
* The behavior is similar to monad, except the collection type can vary.
*
* For example, you can extract each element from an [[scala.Array Array]],
* even when the return type (or the domain) is a [[scala.collection.immutable.Stream Stream]].
*
*
* {{{
* import java.io.File
* import com.thoughtworks.dsl.keywords.Monadic, Monadic.implicitMonadic
* import com.thoughtworks.dsl.keywords.Each
* import com.thoughtworks.dsl.domains.scalaz._
* import scalaz.std.stream._
*
* def countEach(file: File): Stream[Int] = Stream {
* if (file.isDirectory) {
* file.listFiles() match {
* case null =>
* // Unable to open `file`
* !Stream.empty[Int]
* case children =>
* val child: File = !Each(children)
* !countEach(child)
* }
* } else {
* scala.io.Source.fromFile(file).getLines.size
* }
* }
*
*
* val countCurrentSourceFile = countEach(new File(sourcecode.File()))
*
* inside(countCurrentSourceFile) {
* case Stream(lineCount) =>
* lineCount should be > 0
* }
*
* }}}
*
* Unlike Haskell's do-notation or Idris's !-notation,
* Dsl.scala allows non-monadic keywords like [[com.thoughtworks.dsl.keywords.Each Each]] works along with
* monads.
* @example Dsl.scala also supports [[scalaz.MonadTrans]].
*
* Considering the line counter implemented in previous example may be failed for some files,
* due to permission issue or other IO problem,
* you can use [[scalaz.OptionT]] monad transformer to mark those failed file as a [[scala.None None]].
*
* {{{
* import scalaz._
* import java.io.File
* import com.thoughtworks.dsl.keywords.Monadic, Monadic.implicitMonadic
* import com.thoughtworks.dsl.domains.scalaz._
* import scalaz.std.stream._
*
* def countLift(file: File): OptionT[Stream, Int] = OptionT.some {
* if (file.isDirectory) {
* file.listFiles() match {
* case null =>
* // Unable to open `file`
* !OptionT.none[Stream, Int]
* case children =>
* val child: File = !Stream(children: _*)
* !countLift(child)
* }
* } else {
* scala.io.Source.fromFile(file).getLines.size
* }
* }
*
*
* val countCurrentSourceFile = countLift(new File(sourcecode.File())).run
*
* inside(countCurrentSourceFile) {
* case Stream(Some(lineCount)) =>
* lineCount should be > 0
* }
* }}}
*
*
* Note that our keywords are adaptive to the domain it belongs to.
* Thus, instead of explicit `!Monadic(OptionT.optionTMonadTrans.liftM(Stream(children: _*)))`,
* you can simply have `!Stream(children: _*)`.
* The implicit lifting feature looks like Idris's effect monads,
* though the mechanisms is different from `implicit lift` in Idris.
* @see [[Dsl]] for the guideline to create your custom DSL.
* @see [[domains.scalaz]] for using [[Dsl.Keyword#unary_$bang !-notation]] with [[scalaz]].
* @see [[domains.cats]] for using [[Dsl.Keyword#unary_$bang !-notation]] with [[cats]].
*
*
*/
package object dsl
package dsl {
/** Contains built-in domain-specific [[com.thoughtworks.dsl.Dsl.Keyword Keyword]]s and their corresponding interpreters.
*
*
*/
package object keywords
}