Removed Jupyter, it is deployed with JupyterHub Updated worker to statefulsets to use disk spill over.
Dask allows distributed computation in Python.
This chart will deploy the following:
- 1 x Dask scheduler with port 8786 (scheduler) and 80 (Web UI) exposed on an external LoadBalancer (default)
- 3 x Dask workers that connect to the scheduler
- 1 x Jupyter notebook (optional) with port 80 exposed on an external LoadBalancer (default)
- All using Kubernetes Deployments
Tip: See the Kubernetes Service Type Docs for the differences between ClusterIP, NodePort, and LoadBalancer.
First we need to add the Dask helm repo to our local helm config.
helm repo add dask https://helm.dask.org/
helm repo update
To install the chart with the release name my-release
:
helm install --name my-release dask/dask
Depending on how your cluster was setup, you may also need to specify
a namespace with the following flag: --namespace my-namespace
.
This chart is fully compatible with the previous chart, it is just a change of location.
If you have an existing deployment of Dask which used the now-deprecated stable/dask
chart
you can upgrade it by changing the repo name in your upgrade command.
# Add the Dask repo if you haven't already
helm repo add dask https://helm.dask.org/
helm repo update
# Upgrade your deployment that was previous created with stable/dask
helm upgrade my-release dask/dask
The following tables list the configurable parameters of the Dask chart and their default values.
Parameter | Description | Default |
---|---|---|
scheduler.name |
Dask scheduler name | scheduler |
scheduler.image |
Container image name | daskdev/dask |
scheduler.imageTag |
Container image tag | 1.1.5 |
scheduler.replicas |
k8s deployment replicas | 1 |
scheduler.tolerations |
Tolerations | [] |
scheduler.nodeSelector |
nodeSelector | {} |
scheduler.affinity |
Container affinity | {} |
Parameter | Description | Default |
---|---|---|
webUI.name |
Dask webui name | webui |
webUI.servicePort |
k8s service port | 80 |
webUI.ingress.enabled |
Enable ingress controller resource | false |
webUI.ingress.hostname |
Ingress resource hostnames | dask-ui.example.com |
webUI.ingress.tls |
Ingress TLS configuration | false |
webUI.ingress.secretName |
Ingress TLS secret name | dask-scheduler-tls |
webUI.ingress.annotations |
Ingress annotations configuration | null |
Parameter | Description | Default |
---|---|---|
worker.name |
Dask worker name | worker |
worker.image |
Container image name | daskdev/dask |
worker.imageTag |
Container image tag | 1.1.5 |
worker.replicas |
k8s hpa and deployment replicas | 3 |
worker.resources |
Container resources | {} |
worker.tolerations |
Tolerations | [] |
worker.nodeSelector |
nodeSelector | {} |
worker.affinity |
Container affinity | {} |
worker.port |
Worker port (defaults to random) | "" |
Parameter | Description | Default |
---|---|---|
jupyter.name |
Jupyter name | jupyter |
jupyter.enabled |
Include optional Jupyter server | true |
jupyter.image |
Container image name | daskdev/dask-notebook |
jupyter.imageTag |
Container image tag | 1.1.5 |
jupyter.replicas |
k8s deployment replicas | 1 |
jupyter.servicePort |
k8s service port | 80 |
jupyter.resources |
Container resources | {} |
jupyter.tolerations |
Tolerations | [] |
jupyter.nodeSelector |
nodeSelector | {} |
jupyter.affinity |
Container affinity | {} |
jupyter.ingress.enabled |
Enable ingress controller resource | false |
jupyter.ingress.hostname |
Ingress resource hostnames | dask-ui.example.com |
jupyter.ingress.tls |
Ingress TLS configuration | false |
jupyter.ingress.secretName |
Ingress TLS secret name | dask-jupyter-tls |
jupyter.ingress.annotations |
Ingress annotations configuration | null |
When launching the Jupyter server, you will be prompted for a password. The
default password set in values.yaml is dask
.
jupyter:
...
password: 'sha1:aae8550c0a44:9507d45e087d5ee481a5ce9f4f16f37a0867318c' # 'dask'
To change this password, run jupyter notebook password
in the command-line,
example below:
$ jupyter notebook password
Enter password: dask
Verify password: dask
[NotebookPasswordApp] Wrote hashed password to /home/dask/.jupyter/jupyter_notebook_config.json
$ cat /home/dask/.jupyter/jupyter_notebook_config.json
{
"NotebookApp": {
"password": "sha1:aae8550c0a44:9507d45e087d5ee481a5ce9f4f16f37a0867318c"
}
}
Replace the jupyter.password
field in values.yaml with the
hash generated for your new password.
If you want to change the default parameters, you can do this in two ways.
You can change the default parameters in values.yaml
, or create your own
custom YAML config file, and specify this file when installing your chart with
the -f
flag. Example:
helm install --name my-release -f values.yaml dask/dask
Tip: You can use the default values.yaml for reference
If you want to change parameters for a specific install without changing
values.yaml
, you can use the --set key=value[,key=value]
flag when running
helm install
, and it will override any default values. Example:
helm install --name my-release --set jupyter.enabled=false dask/dask
The default daskdev/dask
images have a standard Miniconda installation along
with some common packages like NumPy and Pandas. You can install custom packages
with either Conda or Pip using optional environment variables. This happens
when your container starts up.
Note: The
IP:PORT
of this chart's services will not be accessible until extra packages finish installing. Expect to wait at least a minute for the Jupyter Server to be accessible if adding packages below, likenumba
. This time will vary depending on which extra packages you choose to install.
Consider the following YAML config as an example:
jupyter:
env:
- name: EXTRA_CONDA_PACKAGES
value: numba xarray -c conda-forge
- name: EXTRA_PIP_PACKAGES
value: s3fs dask-ml --upgrade
worker:
env:
- name: EXTRA_CONDA_PACKAGES
value: numba xarray -c conda-forge
- name: EXTRA_PIP_PACKAGES
value: s3fs dask-ml --upgrade
Note: The Jupyter and Dask-worker environments should have matching software environments, at least where a user is likely to distribute that functionality.
Releases of the Helm chart are automatically pushed to the gh-pages
branch by Travis CI when git tags are created.
Before releasing you may want to ensure the chart is up to date with the latest Docker images and Dask versions:
- Update the image tags in
dask/values.yaml
to reflect the latest release of the Dask Docker images. - Update the
appVersion
value indask/Chart.yaml
to also reflect this version.
Then to perform a release you need to create and push a new tag.
- Update the
version
key indask/Chart.yaml
with the new chart versionx.x.x
. - Add a release commit
git commit -a -m "bump version to x.x.x"
. - Tag the commit
git tag -a x.x.x -m 'Version x.x.x'
. - Push the tags
git push upstream master --tags
. - Travis CI will automatically build and release to the chart repository.