A comprehensive geospatial analysis project structure for learning and implementing GIS programming with Python.
This project provides a professional structure for geospatial data analysis using Python, focusing on:
- Vector Data Analysis (Shapefiles, GeoJSON, etc.)
- Raster Data Processing (TIFF, Imagery, etc.)
- Spatial Analytics and Visualization
- Organized Workflow for reproducible geospatial research
GisProgramming/
├── 📂 data/ # Data storage (not tracked in Git)
│ ├── raw/ # Original data files
│ │ ├── vector/ # Shapefiles, GeoJSON, etc.
│ │ └── raster/ # TIFF, imagery, etc.
│ ├── processed/ # Cleaned/processed data
│ └── external/ # External datasets
├── 📓 notebooks/ # Jupyter notebooks
│ ├── exploratory/ # Data exploration
│ ├── analysis/ # Main analysis notebooks
│ └── visualization/ # Visualization notebooks
├── 📦 src/ # Source code modules
│ ├── config.py # Project configuration
│ ├── data_processing/ # Data utilities
│ ├── analysis/ # Analysis functions
│ └── visualization/ # Plotting utilities
├── 📊 output/ # Results (sample outputs tracked)
│ ├── figures/ # Charts and maps
│ ├── tables/ # Analysis results
│ └── processed_data/ # Final datasets
├── 📚 docs/ # Documentation
└── 🧪 tests/ # Unit tests
git clone https://github.com/YOUR_USERNAME/GisProgramming.git
cd GisProgramming
# Create virtual environment (recommended)
python -m venv gis_env
source gis_env/bin/activate # On Windows: gis_env\Scripts\activate
# Install required packages
pip install -r requirements.txt
python -c "import geopandas; print('✅ GeoPandas installed successfully!')"
# Import project modules
import sys
sys.path.append('src')
from config import Config
from data_processing.vector_utils import VectorDataProcessor
# Initialize
config = Config()
processor = VectorDataProcessor()
# Load your data (place files in data/raw/vector/)
gdf = processor.load_vector_data("your_file.shp")
# Basic analysis
print(f"Loaded {len(gdf)} features")
print(f"CRS: {gdf.crs}")
jupyter notebook notebooks/analysis/vector_data_analysis.ipynb
- GeoPandas - Vector data processing
- Rasterio - Raster data handling
- Shapely - Geometric operations
- Matplotlib/Seaborn - Visualization
- Pandas/NumPy - Data analysis
- Jupyter - Interactive analysis
- Start with:
notebooks/analysis/vector_data_analysis.ipynb
- Explore: Basic geospatial operations and visualizations
- Advance to: Spatial analysis and custom workflows
- Build: Your own geospatial analysis projects
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-analysis
) - Commit your changes (
git commit -m 'Add amazing analysis'
) - Push to branch (
git push origin feature/amazing-analysis
) - Open a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
- Built for learning Geospatial Analytics with Python
- Structured for Supply Chain and Marketing Analytics integration
- Designed for Power BI and Excel workflow compatibility
Happy Mapping! 🗺️📊✨