The following repository will allow you to leverage Tensorflow Object Detection models that have been converted to TFLite on a Raspberry Pi.
Walk through the TFOD tutorial up to step 12 to generate TFLite files:https://github.com/Vicky-Projects/object-detection
Clone the current repository onto your Raspberry Pi:https://github.com/Vicky-Projects/object-detection-Raspberry-Pi
pip3 install opencv-python
sudo apt-get install libcblas-dev
sudo apt-get install libhdf5-dev
sudo apt-get install libhdf5-serial-dev
sudo apt-get install libatlas-base-dev
sudo apt-get install libjasper-dev
sudo apt-get install libqtgui4
sudo apt-get install libqt4-testv
echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list
curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
sudo apt-get update
sudo apt-get install python3-tflite-runtime
Copy your detect.tflite model into the same repository and update the labels.txt file to represent your labels.
Run real time detections using the detect.py script
python3 detect.py