Skip to content

VigneshwaranAI-code/RAG_chatbot

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

7 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🧠 RAG 1.0 Workflow: From PDF to Smart Answers

Retrieval-Augmented Generation (RAG) is revolutionizing how we interact with documents. Instead of static data, imagine dynamic, AI-powered answers β€” instantly available! πŸš€

In this post, I walk through a simple, powerful RAG 1.0 pipeline β€” starting from a PDF and ending with smart, context-rich output.


πŸ”₯ Full Workflow

  1. Load PDF β€” Bring your documents into the system using PyMuPDF, pdfplumber, or similar tools. πŸ“„
  2. Split Content β€” Break text into smaller chunks for efficient retrieval. βœ‚οΈ
  3. Embedding β€” Convert text into vectors using embedding models (OpenAI, Hugging Face, etc). πŸ“ˆ
  4. Retrieval β€” Fetch relevant information dynamically from your vector store (like FAISS, ChromaDB). πŸ”
  5. Output Generation β€” Generate context-aware, smart responses using LLMs. 🧠

βš™οΈ Prerequisites

To implement this workflow, you need the following:

  • Python knowledge (basics and intermediate) 🐍
  • Libraries:
    • PyMuPDF / pdfplumber for PDF handling
    • LangChain for chaining steps
    • FAISS, ChromaDB, Pinecone, or any vector DB
    • Hugging Face Transformers or OpenAI API for embeddings and LLMs
  • Concepts:
    • Text splitting strategies
    • Embeddings and vector similarity search
    • Retrieval-Augmented Generation
  • API Access: (Optional) OpenAI, Hugging Face, Cohere, etc πŸ”‘
  • Environment Setup:
    • Python 3.10+
    • Virtual environment (recommended)
    • Jupyter Notebook / VS Code / Any IDE

⚑ Quick RAG Workflow (30 Sec Version)

πŸ“„ Load PDF β†’ βœ‚οΈ Split β†’ πŸ“ˆ Embed β†’ πŸ” Retrieve β†’ 🧠 Generate Output!

Simple workflow. Huge impact.
Turning static documents into dynamic AI-driven knowledge engines! πŸ”₯


πŸš€ Why RAG?

βœ… Real-time dynamic knowledge retrieval
βœ… Up-to-date and accurate responses
βœ… Combine LLM power with your own data


About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages