Skip to content

XingLongH/GTMFuse

Repository files navigation

GTMFuse: Group-attention transformer-driven multiscale dense feature-enhanced network for infrared and visible image fusion

⭐ This code has been completely released ⭐

⭐ our article

If our code is helpful to you, please cite:

@article{mei2024gtmfuse,
  title={GTMFuse: Group-attention transformer-driven multiscale dense feature-enhanced network for infrared and visible image fusion},
  author={Mei, Liye and Hu, Xinglong and Ye, Zhaoyi and Tang, Linfeng and Wang, Ying and Li, Di and Liu, Yan and Hao, Xin and Lei, Cheng and Xu, Chuan and others},
  journal={Knowledge-Based Systems},
  volume={293},
  pages={111658},
  year={2024},
  publisher={Elsevier}
}

To Train

python train.py 

To Test

  1. Downloading the pre-trained checkpoint from best_model.pth and putting it in ./checkpoints.
  2. python test.py

HBUT dataset

Downloading the HBUT dataset from HBUT

overall network

Results

TNO Datasset

Qualitative result

- Four representative images of the TNO test set.In alphabetical order they are infrared image, visible image, GTF, FusionGAN, SDNet, RFN–Nest, U2Fusion, LRRNet, SwinFusion, CDDFuse, DATFuse, and GTMFuse.

Quantitative Results

Methods EN SD SF VIF AG Qabf
GTF 6.60008 8.69847 0.04613 0.49451 4.36880 0.43436
FusionGAN 6.50420 8.31568 0.03139 0.61350 3.20322 0.25814
SDNet 6.58356 8.58165 0.05916 0.63884 6.03142 0.44332
RFN–Nest 6.67323 8.80744 0.03991 0.67467 4.11122 0.43302
U2Fusion 6.90395 8.98294 0.05854 0.68953 6.27575 0.45158
LRRNet 6.70679 9.14174 0.05434 0.74519 4.82270 0.38131
SwinFusion 6.69018 8.74623 0.04868 0.81244 4.74248 0.52084
CDDFuse 7.02021 8.92531 0.06416 0.82307 6.07101 0.51846
DATFuse 6.77604 8.82027 0.04612 0.82066 4.51106 0.51235
GTMFuse 7.03991 9.22010 0.06607 0.84018 6.65676 0.60472

RoadScene Datasset

Qualitative result

- Four representative images of the RoadScene test set.In alphabetical order they are infrared image, visible image, GTF, FusionGAN, SDNet, RFN–Nest, U2Fusion, LRRNet, SwinFusion, CDDFuse, DATFuse, and GTMFuse.

Quantitative Results

Methods EN SD SF VIF AG Qabf
GTF 7.45805 10.4952 0.04605 0.57953 4.04458 0.37079
FusionGAN 7.09511 10.0518 0.04323 0.56307 4.11028 0.28132
SDNet 7.3388 10.1153 0.07541 0.74513 7.55126 0.51691
RFN–Nest 7.34281 10.2000 0.05192 0.75382 5.13552 0.45230
U2Fusion 7.21249 10.1205 0.07469 0.67670 7.42630 0.51831
LRRNet 7.09023 10.1468 0.06907 0.64912 6.19723 0.41013
SwinFusion 7.18569 10.3193 0.06757 0.80244 6.52487 0.57124
CDDFuse 7.48812 10.6921 0.09099 0.78466 8.33022 0.49671
DATFuse 6.89646 10.4078 0.05495 0.79045 5.06397 0.50003
GTMFuse 7.35795 10.5113 0.08181 0.87918 7.92432 0.60665

MSRS Dataset

Qualitative result

- Four representative images of the MSRS test set. In alphabetical order they are infrared image, visible image, GTF, FusionGAN, SDNet, RFN–Nest, U2Fusion, LRRNet, SwinFusion, CDDFuse, DATFuse, and GTMFuse.

Quantitative Results

Methods EN SD SF VIF AG Qabf
GTF 4.44195 6.11111 0.05620 0.48176 3.53966 0.39194
FusionGAN 5.86785 6.79263 0.03654 0.61998 3.00051 0.24709
SDNet 5.54468 6.13925 0.05910 0.48644 4.40836 0.41903
RFN–Nest 5.81096 7.91701 0.04982 0.74520 4.12198 0.50474
U2Fusion 5.03625 6.78870 0.06157 0.57216 4.48894 0.42512
LRRNet 5.89799 7.30930 0.04548 0.38422 3.64204 0.19980
SwinFusion 6.61543 8.46817 0.06756 0.99403 5.26562 0.66481
CDDFuse 6.32740 8.53021 0.08130 0.97155 6.12164 0.66558
DATFuse 6.29844 7.71886 0.07247 0.71196 5.96856 0.54618
GTMFuse 6.78256 8.60603 0.08105 1.00857 6.39748 0.69590

If you have any questions, please contact me by email (hux18943@gmail.com).

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages