This is a reproduction of voxelnet based on PyTorch. The original can be referred to link.
-
Pytorch
-
Multi GPUs
- Linux (tested on Ubuntu 16.04 )
- Python 3.6
- PyTorch 0.4.0 and torchvision
- Cython
- tensorboard
- mayavi
a. Install PyTorch 0.4.0 and torchvision following the official instructions.
b. Clone the VoxelNet repository.
git clone https://github.com/Yc174/voxelnet.git
c. Compile cuda extensions.
cd lib/extensions/_nms
sh build.sh
It is recommended to symlink the dataset root to $voxelnet/datasets
.
voxelnet
├── lib
├── tools
├── experiments
├── datasets
│ ├── KITTI
│ │ ├── object
│ │ │ ├── training
│ │ │ ├── testing
- Multi GPUs training
- use tensorboard to visualize loss
- use validate dataset
To train kitti dataset and save the model.
cd voxelnet
./experiments/run_trainval.sh
- single GPU testing
- visualize detection results
To test kitti dataset and visualize the results.
cd voxelnet
./experiments/run_test.sh