Skip to content

ZXS-Labs/SSRNO

Repository files navigation

SSRNO

This repository contains the official implementation for Scalable Super Resolution Neural Operator in ACM MM 2024.

Installation

  1. Install requirements from conda
    conda env create -f requirements.yml
  2. Clone the repo
    git clone https://github.com/ZXS-Labs/SSRNO.git
  3. Install the modified TorchIntegral
    pip install ./_TO
  4. [optional] Install Inplace_Gelu from Tempo
     git clone https://github.com/UofT-EcoSystem/Tempo.git
     cd Tempo
     python setup.py install

Quick start

Download the pretrained model from here.

Link your data folder(s) to ./data/ and change the root_path in yaml.

#training
python inn_attention_train.py \
    --config ./configs/train_ssrno.yaml

#testing
python inn_attention_test.py \
    --config ./configs/test_ssrno.yaml \
    --model "the model pth" \
    --mcell True

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{
    han2024scalable,
    title={Scalable Super-Resolution Neural Operator},
    author={Lei Han and Xuesong Zhang},
    booktitle={ACM Multimedia 2024},
    year={2024},
    url={https://openreview.net/forum?id=COlygxQAV9}
}

Acknowledgements

This code is built on TorchIntegral ,Tempo and SRNO.

About

Scalable Super Resolution in ACM MM 2024

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published