This repository contains the official implementation for Scalable Super Resolution Neural Operator in ACM MM 2024.
- Install requirements from conda
conda env create -f requirements.yml
- Clone the repo
git clone https://github.com/ZXS-Labs/SSRNO.git
- Install the modified TorchIntegral
pip install ./_TO
- [optional] Install Inplace_Gelu from Tempo
git clone https://github.com/UofT-EcoSystem/Tempo.git cd Tempo python setup.py install
Download the pretrained model from here.
Link your data folder(s) to ./data/
and change the root_path
in yaml.
#training
python inn_attention_train.py \
--config ./configs/train_ssrno.yaml
#testing
python inn_attention_test.py \
--config ./configs/test_ssrno.yaml \
--model "the model pth" \
--mcell True
If you find our work useful in your research, please consider citing:
@inproceedings{
han2024scalable,
title={Scalable Super-Resolution Neural Operator},
author={Lei Han and Xuesong Zhang},
booktitle={ACM Multimedia 2024},
year={2024},
url={https://openreview.net/forum?id=COlygxQAV9}
}
This code is built on TorchIntegral ,Tempo and SRNO.