-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Description
I build package on cuda, so llama running on GPU.
But CLIP part still on CPU.
How to fix it?
Thanks.
clip_model_load: loaded meta data with 19 key-value pairs and 455 tensors from
.../models/minicpm/mmproj-model-f16.gguf
clip_model_load: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
clip_model_load: - kv 0: general.architecture str = clip
clip_model_load: - kv 1: clip.has_text_encoder bool = false
clip_model_load: - kv 2: clip.has_vision_encoder bool = true
clip_model_load: - kv 3: clip.has_minicpmv_projector bool = true
clip_model_load: - kv 4: general.file_type u32 = 1
clip_model_load: - kv 5: general.description str = image encoder for MiniCPM-V
clip_model_load: - kv 6: clip.projector_type str = resampler
clip_model_load: - kv 7: clip.minicpmv_version i32 = 3
clip_model_load: - kv 8: clip.vision.image_size u32 = 448
clip_model_load: - kv 9: clip.vision.patch_size u32 = 14
clip_model_load: - kv 10: clip.vision.embedding_length u32 = 1152
clip_model_load: - kv 11: clip.vision.feed_forward_length u32 = 4304
clip_model_load: - kv 12: clip.vision.projection_dim u32 = 0
clip_model_load: - kv 13: clip.vision.attention.head_count u32 = 16
clip_model_load: - kv 14: clip.vision.attention.layer_norm_epsilon f32 = 0.000001
clip_model_load: - kv 15: clip.vision.block_count u32 = 26
clip_model_load: - kv 16: clip.vision.image_mean arr[f32,3] = [0.500000, 0.500000, 0.500000]
clip_model_load: - kv 17: clip.vision.image_std arr[f32,3] = [0.500000, 0.500000, 0.500000]
clip_model_load: - kv 18: clip.use_gelu bool = true
clip_model_load: - type f32: 285 tensors
clip_model_load: - type f16: 170 tensors
clip_model_load: CLIP using CPU backend
key clip.use_silu not found in file
clip_model_load: params backend buffer size = 996.02 MB (455 tensors)
key clip.vision.image_grid_pinpoints not found in file
key clip.vision.mm_patch_merge_type not found in file
key clip.vision.image_crop_resolution not found in file
clip_image_build_graph: 448 448
clip_model_load: compute allocated memory: 102.80 MB
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA RTX A6000, compute capability 8.6, VMM: yes
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA RTX A6000) - 47995 MiB free
llama_model_loader: loaded meta data with 22 key-value pairs and 339 tensors from /home/paperspace/Documents/AddrEngine/Pro/models/minicpm/ggml-model-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen2
llama_model_loader: - kv 1: general.name str = model
llama_model_loader: - kv 2: qwen2.block_count u32 = 28
llama_model_loader: - kv 3: qwen2.context_length u32 = 32768
llama_model_loader: - kv 4: qwen2.embedding_length u32 = 3584
llama_model_loader: - kv 5: qwen2.feed_forward_length u32 = 18944
llama_model_loader: - kv 6: qwen2.attention.head_count u32 = 28
llama_model_loader: - kv 7: qwen2.attention.head_count_kv u32 = 4
llama_model_loader: - kv 8: qwen2.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 9: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 10: general.file_type u32 = 15
llama_model_loader: - kv 11: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 12: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,151666] = ["!", """, "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 14: tokenizer.ggml.token_type arr[i32,151666] = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 15: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32 = 151644
llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 18: tokenizer.ggml.unknown_token_id u32 = 128244
llama_model_loader: - kv 19: tokenizer.ggml.padding_token_id u32 = 0
llama_model_loader: - kv 20: tokenizer.chat_template str = {% for message in messages %}{% if lo...
llama_model_loader: - kv 21: general.quantization_version u32 = 2
llama_model_loader: - type f32: 141 tensors
llama_model_loader: - type q4_K: 169 tensors
llama_model_loader: - type q6_K: 29 tensors