Skip to content

Some machine learning (ML) methods plus related numerical linear algebra (LA) and also quadratic programming algorithms to solve the ML optimization problems, i.e. no implementation from external libraries is used except for numpy arrays and basic numpy operations on arrays, such as algebraic operations, matrix multiplication, etc. The algorithm…

License

Notifications You must be signed in to change notification settings

ahmetcik/ML-and-LA-from-scratch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ML-and-LA-from-scratch

Some machine learning (ML) methods plus related numerical linear algebra (LA) and also quadratic programming algorithms to solve the ML optimization problems, i.e. no implementation from external libraries is used except for numpy arrays and basic numpy operations on arrays, such as algebraic operations, matrix multiplication, etc. The algorithms are described in Theoretical-background.pdf.

Note that, neither the implementations are optimized nor are the chosen (especially LA) algorithms to solve the ML problems optimal.
The considered LA algorithms are: QR-decomposition based on Gram-Schmidt proces and Housholder reflections, QR algorithm to determine eigenvalues (and vectors for symmetric matrices), singular-value decompostion, Cholesky decomposition, and forward and backward substitution. Quadratic programming is performed via the primal-dual interior-point method.

The included machine-learning methods are: linear (least-squares and ridge) regression, non-negative least squares regression, orthogonal matching pursuit, kernel ridge regression, support vector machines, logistic regression, and principal component analysis.

About

Some machine learning (ML) methods plus related numerical linear algebra (LA) and also quadratic programming algorithms to solve the ML optimization problems, i.e. no implementation from external libraries is used except for numpy arrays and basic numpy operations on arrays, such as algebraic operations, matrix multiplication, etc. The algorithm…

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published