大模型知识库工具, 实现本地知识库入向量库,根据知识查询
pip install git+https://github.com/aigc-open/llm-knowledge-function.git
python3 -m llm_knowledge_function.download_model
2024-08-10 19:24:55.231 | INFO | daily_basic_function:wrapper:42 - 加载embedding模型: 14.704779386520386
from llm_knowledge_function import LocalKnowledge
from fire import Fire
def split_documents_MD():
res = LocalKnowledge().split_documents(filename="README.MD")
print(res)
def split_documents_PDF():
res = LocalKnowledge().split_documents(filename="test.pdf")
print(res)
def split_documents_PY():
res = LocalKnowledge().split_documents(filename="test.py", chunk_size=100)
print(res)
def filename_to_milvus():
# res = LocalKnowledge(uri="./.demo-milvus.db",
# model_name="moka-ai/m3e-base",
# cache_folder="/root/.cache/huggingface/hub/").filename_to_milvus(filename="test.pdf", chunk_size=100, namespace="pdf")
res = LocalKnowledge(uri="./.demo-milvus.db",
model_name="moka-ai/m3e-base",
cache_folder="/root/.cache/huggingface/hub/").filename_to_milvus(filename="test.py", chunk_size=100, namespace="3")
print(res)
def knowledge_search():
k = LocalKnowledge(uri="./.demo-milvus.db",
model_name="moka-ai/m3e-base",
cache_folder="/root/.cache/huggingface/hub/")
res = k.similarity_search(query="import", expr='namespace == "3"')
print(res)
# res = k.similarity_search(query="web3.0是什么", expr='namespace == "pdf"')
# print(res)
# res = k.similarity_search(query="web3.0是什么", expr='namespace == "py"')
# print(res)
# res = k.similarity_search(query="投资的意义", expr='namespace == "pdf"')
# print(res)
if __name__ == "__main__":
Fire()