Python Data Visualization: Master Matplotlib and Seaborn
Welcome to the Python Data Visualization repository! This repository contains the source code, examples, and resources featured in the YouTube tutorial: "How to Create Stunning Data Visualizations with Python: Master Matplotlib and Seaborn".
This tutorial covers the basics of Matplotlib and Seaborn, two essential Python libraries for creating impactful data visualizations.
-
Matplotlib Basics:
- Line plots, bar charts, and scatter plots.
- Customizing titles, axes, and legends.
-
Advanced Visualizations with Seaborn:
- Histograms with density curves.
- Boxplots, violin plots, and pairplots.
-
Practical Examples:
- Real-world use cases to visualize trends, distributions, and relationships in your datasets.
- Python 3.7+
- Libraries:
pip install matplotlib seaborn
import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y = [10, 20, 30, 40, 50]
plt.plot(x, y, label='Line Plot')
plt.title('Line Plot Example')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.legend()
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
data = [10, 20, 25, 30, 35, 40, 45]
sns.boxplot(x=data)
plt.title('Boxplot Example')
plt.show()
Matplotlib Documentation Seaborn Documentation
Watch the full tutorial on YouTube: Youtube Video Follow for more data science projects: Github Profile
This project is licensed under the MIT License - see the LICENSE file for details.
Let me know if you want a specific link placeholder updated or additional sections!
Feel free to fork this repository, improve the code, or share your ideas. Pull requests are welcome!