NumPy - Basics - Practice Problems #20
Replies: 14 comments 1 reply
-
import numpy as np
n = np.array([1, 2, 3, 45])
print(not np.isin(0, n)) import numpy as np
n = np.array([0, 0, 0, 0])
print(np.any(n)) import numpy as np
def checkArray(n):
for i in range(len(n)):
if np.isinf(n[i]) or np.isnan(n[i]):
return True
elif i == len(n)-1:
return False
n = np.array([1, 2, 1, 0])
print(checkArray(n)) import numpy as np
def checkArray(n):
if np.any(np.isposinf(n)) and np.any(np.isneginf(n)):
print("Positive and Negative")
elif np.any(np.isposinf(n)):
print("Positive inf")
elif np.any(np.isneginf(n)):
print("Negative inf")
else:
print("None are infinity")
n = np.array([1, -np.inf, np.inf, 0])
print(checkArray(n)) import numpy as np
def checkArray(n):
if np.any(np.isnan(n)):
return True
else:
return False
n = np.array([1, -np.inf, np.nan, 0])
print(checkArray(n)) import numpy as np
n = np.array([1+1j, 1+0j, 4.5, 3, 2, 2j])
print(np.iscomplex(n))
print(np.isreal(n))
print(np.isscalar([3.1])) import numpy as np
n = np.array([[2,2,2],[2,2,2]])
p = np.array([[3,1,2],[1,3,2]])
print(np.array_equal(n, p, equal_nan=True)) import numpy as np
n = np.array([[2,2,2],[2,2,2]])
p = np.array([[3,1,2],[1,3,2]])
print("Greater")
print(np.greater(n,p))
print("\ngreater equal")
print(np.greater_equal(n,p))
print("\n less")
print(np.less(n,p))
print("\n less equal")
print(np.less_equal(n,p)) import numpy as np
n = np.array([[2,2,2],[2,2,2]])
p = np.array([[3,1,2],[1,3,2]])
print(np.array_equal(n, p, equal_nan=True)) import numpy as np
n = np.array([1,7,13,105])
print(n.itemsize * np.size(n)) import numpy as np
zero = np.zeros(10)
print(f"{zero} \n")
one = np.ones(10)
print(f"{one}\n")
ten = np.ones(10)*10
print(f"{ten}\n") import numpy as np
arr = np.arange(30, 70)
print(arr) import numpy as np
arr = np.arange(30, 70,2)
print(arr) import numpy as np
arr = np.identity(3)
print(arr) import numpy as np
num = np.random.uniform(0,1)
print(num) import numpy as np
num = np.random.normal(0,1,15)
print(num) import numpy as np
num = np.random.normal(0,1,15)
print(num.shape) import numpy as np
arr = np.identity(3)
print(arr) import numpy as np
arr = np.ones((10,10))*10
arr[1:-1, 1:-1] = 0
print(arr) import numpy as np
arr = np.zeros((5, 5))
for i in range(len(arr)):
arr[i][i] = i+1
print(arr) import numpy as np
arr = np.array([[1, 3, 4], [1, 2, 3]])
print(f"{arr} \n")
print(f"{np.sum(arr, axis=1)} is the sum of each row \n{np.sum(arr, axis=0)} is the sum of each column") import numpy as np
arr = np.array([[1, 3, 4, 6], [2, 3, 6, 7], [3, 5, 8, 9], [5, 4, 0, 1]])
print(f"Original array\n {arr}\n")
arr[:, [3, 0]] = arr[:, [0, 3]]
arr[:, [1, 2]] = arr[:, [2, 1]]
print(f"New array\n {arr}") |
Beta Was this translation helpful? Give feedback.
-
1. WAP NumPy no zeros in array# check for zeros in array
import numpy as np
def main():
# test array
mat = [[1,2,3],[4,5,6],[7,8,9]]
arr = np.array(mat)
# input array
# arr = np.array(list(input("Enter an array to be checked for zeros: ")))
# check for zeros
if np.all(arr):
print("There are no zeros in the array.")
else:
print("There are zeros in the array")
# run main
if __name__ == "__main__":
main() 2. WAP NumPy any zeros in array# check for zeros in array
import numpy as np
def main():
# test array
mat = [[1,2,0],[4,5,6],[7,8,9]]
arr = np.array(mat)
# input array
# arr = np.array(list(input("Enter an array to be checked for zeros: ")))
# check for zeros
if np.any(arr==0):
print("There are zeros in the array.")
else:
print("There are no zeros in the array")
# run main
if __name__ == "__main__":
main() 3. WAP NumPy finite numbers# check for finite numbers
import numpy as np
def main():
# test array
mat = [[1,2,np.Inf],[4,5,6],[7,8,9]]
arr = np.array(mat)
# input array
# arr = np.array(list(input("Enter an array to be checked for finiteness: ")))
# check for finite
if np.all(np.isfinite(arr)):
print("All elements are finite.")
else:
print("Some elements are not finite.")
# run main
if __name__ == "__main__":
main() 4. WAP NumPy positive or negative infinity# check for positive infinite or negative infinite
import numpy as np
def main():
# test array
mat = [[1,2,np.Inf],[-np.Inf,5,6],[7,8,9]]
arr = np.array(mat)
# input array
# arr = np.array(list(input("Enter an array to check infiniteness: ")))
# check for infinite
if np.any(np.isposinf(arr)) and np.any(np.isneginf(arr)):
print("There are elements that are positive infinite and negative infinite.")
elif np.any(np.isposinf(arr)):
print("Some elements are positive infinite.")
elif np.any(np.isneginf(arr)):
print("Some elements are negative infinite.")
else:
print("All elements are finite.")
# run main
if __name__ == "__main__":
main() 5. WAP NumPy check NaN in array# check for NaN values
import numpy as np
def main():
# test array
mat = [[1,np.NaN,np.Inf],[-np.Inf,5,6],[7,8,9]]
arr = np.array(mat)
# input array
# arr = np.array(list(input("Enter an array to check NaN values: ")))
# check for Nan
if np.any(np.isnan(arr)):
print("Some elements are NaN.")
else:
print("All elements are valid.")
# run main
if __name__ == "__main__":
main() 6. WAP NumPy check complex number, real number and if numbers are scalar in array# check for complex,real and scalar values
import numpy as np
def main():
# test array
mat = [[1,np.NaN,np.Inf],[-np.Inf,5,6],[7,8+2j,9]]
arr = np.array(mat)
# input array
# arr = np.array(list(input("Enter an array to check NaN values: ")))
# check for complex, real or scalar
if np.any(np.iscomplex(arr)):
print("Some elements are Complex.")
else:
print("There are no Complex elements in the array.")
if np.any(np.isreal(arr)):
print("Some elements are Real.")
else:
print("There are no Real elements in the array.")
if np.any([np.isscalar(el) for element in mat for el in element]):
print("Some elements are Scalar.")
else:
print("There are no Scalar elements in the array.")
# run main
if __name__ == "__main__":
main() 7. Two arrays equal within a tolerance# equal with tolerance
import numpy as np
def main():
a = np.array([1,2,3,4,5])
b = np.array([1.00000001,1.9999999,3,4.0000007,4.9999999])
print(f"Array 1:{a} \nArray 2:{b}")
if np.allclose(a,b):
print(f"The arrays are considered equal.")
else:
print("The arrays are not equal")
if __name__ == "__main__":
main() 8. Greater, greater_equal, Less, less_equal of two arrays# >, >=, <, <=
import numpy as np
def main():
a = np.array([1,2,3,4,5])
b = np.array([1.00000001,1.999999,3,4.0000007,4.999999])
print(f"Array A:{a} \nArray B:{b}")
print(f"A Greater B: {np.greater(a,b)}")
print(f"A Greater Equal B: {np.greater_equal(a,b)}")
print(F"A Less B: {np.less(a,b)}")
print(F"A Less Equal B: {np.less_equal(a,b)}")
if __name__ == "__main__":
main() 9. Equal, Equal within a tolerance of two arrays# equal
import numpy as np
def main():
a = np.array([1,2,3,4,5])
b = np.array([1.00000001,1.999999,3,4.0000007,4.999999])
print(f"Array A:{a} \nArray B:{b}")
print(f"A equal B: {np.equal(a,b)}")
print(f"A equal with tolerance B: {np.isclose(a,b)}")
if __name__ == "__main__":
main() 10. Size and memory of array# memory and size
import numpy as np
def main():
a = np.array([[1,2,3,4,5],[3,4j,10,np.inf,-10]])
print(f"Array A:{a}")
print(f"Size of array A: {np.size(a)}")
print(f"Memory of array A: {a.nbytes}")
if __name__ == "__main__":
main() 11. Fixed value arrays# zeros, ones, full
import numpy as np
def main():
# a = np.array([[1,2,3,4,5],[3,4j,10,np.inf,-10]])
# print(f"Array A:{a}")
print(f"10 zeros: {np.zeros(10)}")
print(f"10 ones: {np.ones(10)}")
print(f"10 fives : {np.full(10,5)}")
if __name__ == "__main__":
main() 12. Array in range# aRange
import numpy as np
def main():
# a = np.array([[1,2,3,4,5],[3,4j,10,np.inf,-10]])
# print(f"Array A:{a}")
print(f"Integers from 30 to 70: {np.arange(30,70+1)}")
if __name__ == "__main__":
main() 13. Array of all even integers in range# array in range with condition
import numpy as np
def main():
# a = np.array([[1,2,3,4,5],[3,4j,10,np.inf,-10]])
# print(f"Array A:{a}")
print(f"Even Integers from 30 to 70: {np.arange(30,70+1,step=2)}")
if __name__ == "__main__":
main() 14. 3x3 identity matrix# identity matrix
import numpy as np
def main():
# a = np.array([[1,2,3,4,5],[3,4j,10,np.inf,-10]])
# print(f"Array A:{a}")
print(f"Identity Matrix 3x3: \n{np.identity(3)}")
if __name__ == "__main__":
main() 15. NumPy random number# random
import numpy as np
def main():
# a = np.array([[1,2,3,4,5],[3,4j,10,np.inf,-10]])
# print(f"Array A:{a}")
print(f"Random Number (0,1): \n{np.random.rand()}")
if __name__ == "__main__":
main() 16. Array of 15 random numbers (standard normal distribution)# rand with dist
import numpy as np
def main():
# a = np.array([[1,2,3,4,5],[3,4j,10,np.inf,-10]])
# print(f"Array A:{a}")
print(f"15 Random Number with standard normal distribution: \n{np.random.randn(15,)}")
if __name__ == "__main__":
main() 17. Find number of rows and columns in a matrix# row and column size (shape)
import numpy as np
def main():
a = np.array([[1,2,3,4,5],[3,4j,10,np.inf,-10]])
print(f"Array A:{a}")
print(f"Array A Row and Column Size: \n{np.shape(a)}")
if __name__ == "__main__":
main() 18. Identity Matrix# nxn identity matrix
import numpy as np
def main():
# a = np.array([[1,2,3,4,5],[3,4j,10,np.inf,-10]])
# print(f"Array A:{a}")
n = int(input("Identity Matrix size: "))
print(f"Array A Row and Column Size {n}: \n{np.identity(n)}")
if __name__ == "__main__":
main() 19. 10x10 matrix with borders = 1# 10x10 matrix with borders
import numpy as np
def main():
# a = np.array([[1,2,3,4,5],[3,4j,10,np.inf,-10]])
# print(f"Array A:{a}")
# 10x10 matrix
mat = np.ones((10,10))
#put zeros in the center
mat[1:-1,1:-1] = 0
print(f"10x10 matrix with border: \n{mat}")
if __name__ == "__main__":
main() 20. 5x5 zero matrix with diagonal: [1,2,3,4,5]# 5x5 matrix with diagonal
import numpy as np
def main():
# a = np.array([[1,2,3,4,5],[3,4j,10,np.inf,-10]])
# print(f"Array A:{a}")
# 5x5 matrix
mat = np.zeros((5,5))
#put diagonal in the center
for i in range(5):
mat[i,i] = i+1
print(f"10x10 matrix with border: \n{mat}")
if __name__ == "__main__":
main() 21. Sum of all elements, sum by col and sum by row# sum all, sum cols (axis = 0), sum rows (axis = 1)
import numpy as np
def main():
a = np.array([[1,2,3,4,5],[3,4j,10,-2j,-10]])
print(f"Array A:{a}")
print(f"Sum of entire array A: \n{np.sum(a)}")
print(f"Sum of columns in array A: \n{np.sum(a,axis=0)}")
print(f"Sum of rows array A: \n{np.sum(a,axis=1)}")
if __name__ == "__main__":
main() 22. 4x4 array --> swapping columns# swap first-last, 2-3 cols
import numpy as np
def main():
a = np.random.rand(4,4)
print(F"Array A: \n{a}")
# swap 0-3 and 1-2 cols
a[:,(0,3)] = a[:,(3,0)]
a[:,(1,2)] = a[:,(2,1)]
print(f"Array A after column swap: \n{a}")
if __name__ == "__main__":
main() 23. 4x4 array --> swpping rows
|
Beta Was this translation helpful? Give feedback.
-
Task 1import numpy as np
def main():
x = np.array([1, 2, 3,
4, 6, 7,
8, 9, 10,
0, 89, 67])
print(x)
if np.all(x):
print("The array contains no zeroes.")
else:
print("It contains zeroes.")
if __name__ == "__main__":
main() Task 2import numpy as np
def main():
x = np.array([1, 0, 0, 0])
print(x)
print("Contains a non-zero?", np.any(x))
y = np.array([0, 0, 0, 0])
print(y)
print("Contains a non-zero?", np.any(y))
if __name__ == "__main__":
main() Task 3import numpy as np
def main():
x = np.array([1, 0, np.nan, np.inf])
print(x)
print("Test for finiteness:\n", np.isfinite(x))
if __name__ == "__main__":
main() Task 4import numpy as np
def main():
z = np.array([1, 0, np.nan, np.inf])
print(z)
print("Test for pos or neg infinity:\n", np.isinf(z))
if __name__ == "__main__":
main() Task 5import numpy as np
def main():
c = np.array([1, 0, np.nan, np.inf])
print(c)
print("Testing for NaN:\n", np.isnan(c))
if __name__ == "__main__":
main() Task 6import numpy as np
def main():
a = np.array([1 + 1j, 1 + 0j, 4.5, 3, 2, 2j])
print(a)
print("Test for complex number:\n", np.iscomplex(a))
print("Test for real number:\n", np.isreal(a))
print("Test for scalar type:\n", np.isscalar(3.1), "\n", np.isscalar([3.1]))
if __name__ == "__main__":
main() Task 7import numpy as np
def main():
print("Test of two arrays:\n")
print(np.allclose([1e10, 1e-7], [1.00001e10, 1e-8]))
print(np.allclose([1e10, 1e-8], [1.00001e10, 1e-9]))
print(np.allclose([1e10, 1e-8], [1.0001e10, 1e-9]))
print(np.allclose([1.0, np.nan], [1.0, np.nan]))
print(np.allclose([1.0, np.nan], [1.0, np.nan], equal_nan = True))
if __name__ == "__main__":
main() Task 8import numpy as np
def main():
a = np.array([3, 5])
b = np.array([2, 5])
print(a, b)
print("Comparison — Greater: ", np.greater(a, b))
print("Comparison — Greater Equals: ", np.greater_equal(a, b))
print("Comparison — Less: ", np.less(a, b))
print("Comparison — Less Equal: ", np.less_equal(a, b))
if __name__ == "__main__": main() Task 9import numpy as np
def main():
y = np.array([72, 79, 85, 90, 150, -135, 120, -10, 60, 100])
z = np.array([72, 79, 85, 90, 150, -135, 120, -10, 60, 100.000001])
print("Arrays:")
print(y)
print(z)
print("Comparison Equal:\n", np.equal(y, z))
print("Comparison Equal with Tolerance:\n", np.allclose(y, z))
if __name__ == "__main__": main() Task 10import numpy as np
def main():
A = np.array([1, 7, 13, 105])
print("Array:", A)
print("Size of the memory used:")
print("%d bytes" % (A.size * A.itemsize))
if __name__ == "__main__": main() Task 11import numpy as np
def main():
array = np.zeros(10)
print("Array of Zeroes:\n", array)
array = np.ones(10)
print("Array of ones:\n", array)
array = np.ones(10) * 5
print("Array of fives:\n", array)
if __name__ == "__main__": main() Task 12import numpy as np
def main():
array = np.arange(30, 71)
print("Array:\n", array)
if __name__ == "__main__": main() Task 13import numpy as np
def main():
array = np.arange(30, 71, 2)
print("Array:\n", array)
if __name__ == "__main__": main() Task 14import numpy as np
def main():
array_2D = np.identity(3)
print("Matrix:\n", array_2D)
if __name__ == "__main__": main() Task 15import numpy as np
def main():
random = np.random.normal(0, 1, 1)
print("Random Number: ", random)
if __name__ == "__main__": main() Task 16import numpy as np
def main():
rannum = np.random.normal(0, 1, 15)
print("Random numbers:\n", rannum)
if __name__ == "__main__": main() Task 17import numpy as np
def main():
num = np.arange(10, 22).reshape((3, 4))
print("Matrix:\n", num)
print("# Rows and # Columns:\n", num.shape)
if __name__ == "__main__": main() Task 18import numpy as np
def main():
m = np.eye(3)
print(m)
if __name__ == "__main__": main() Task 19import numpy as np
def main():
z = np.ones((10, 10))
z[1:-1, 1:-1] = 0
print(z)
if __name__ == "__main__": main() Task 20import numpy as np
def main():
y = np.diag([1, 2, 3, 4, 5])
print(y)
if __name__ == "__main__": main() Task 21import numpy as np
def main():
a = np.array([[0, 1], [2, 3]])
print("Array:\n", a)
print("Sum of all: ", np.sum(a))
print("Sum of columns: ", np.sum(a, axis = 0))
print("Sum of rows: ", np.sum(a, axis = 1))
if __name__ == "__main__": main() Task 22 & 23import numpy as np
def main():
nums = np.arange(16, dtype = 'int').reshape(-1, 4)
print("OG Array:\n", nums)
print("New Array:")
new_nums = nums[:, ::-1]
print(new_nums)
if __name__ == "__main__": main() |
Beta Was this translation helpful? Give feedback.
-
Task1
import numpy as np
x = np.array([[1, 2, 3],[4,5,6]])
print(" array:")
print(x)
print("none of the elements of the said array is zero:")
print(np.all(x))
#Task2
x = np.array([[0, 1, 2, 3],[0,4,5,6]])
print(" array:")
print(x)
print(" none of the elements of the said array is zero:")
print(np.all(x))
#Task3
import numpy as np
a = np.array([1, 0, np.nan, np.inf])
print("Original array")
print(a)
print("Test a given array element-wise for finiteness :")
print(np.isfinite(a)) |
Beta Was this translation helpful? Give feedback.
-
1.- import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 0])
test = np.isin(0, arr)
if test:
print("There are zeros in the array")
else:
print("There are no zeros in the array") 2.- import numpy as np
arr = np.array([(1, 2, 3, 4, 5), (6, 7, 8, 9, 0)])
test = np.count_nonzero(arr)
print(f"In the given arrays there are {len(arr)} elements which {test} are not zeros") 3.- import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 0, np.nan, np.inf])
finite = np.isfinite(arr)
print(arr)
print(f"Test for finiteness\n{finite}") 4.- import numpy as np
print("Cheching for positive infinity\nResult is:", np.isinf(np.inf))
print("Cheching for negative infinity\nThe Result is:", np.isinf(np.NINF)) 5.- import numpy as np
arr = np.array([1,2,3, np.NaN])
print("Original array\n", arr)
print("Testo elemnt-wise for NaN:\n", np.isnan(arr)) 6.- import numpy as np
arr = np.array([1, 2, 3, 2j])
print("Original array\n", arr)
print("Checking for real number:\n",np.isreal(arr))
print("Checking for complex number:\n",np.iscomplex(arr))
print("Checking for scalar number:\n",np.isscalar(4.5)) 7.- import numpy as np
a = np.array([1, 2, 3, 4, 5])
b = np.array([1, 2, 3, 5, 7])
c = np.allclose(a, b, atol=1)
print(c) 8.- import numpy as np
a = ([1,2,3,4,5])
b = ([1,9,0,4,10])
print("Original array A")
print(a)
print("Original array B")
print(b)
print("A > B")
print(np.greater(a, b))
print()
print("A >= B")
print(np.greater_equal(a, b))
print()
print("A < B")
print(np.less(a, b))
print()
print("A <= B")
print(np.less_equal(a, b))
print() 9.- import numpy as np
a = ([1,2,3,4,5])
b = ([1,9,0,4,6])
print("Original array A")
print(a)
print("Original array B")
print(b)
print("A = B")
print(np.equal(a, b))
print()
print("A = B with tolerance")
abs_tol = 1
print(np.isclose(a, b, atol = abs_tol)) 10.- import numpy as np
a = np.array([1, 7, 13, 105])
print("The memory size of the array given is:")
print(a.size * a.itemsize) 11.- import numpy as np
a = np.zeros(10)
print("An array of 10 zeros")
print(a)
a = np.ones(10)
print("An array of 10 ones")
print(a)
a = np.ones(10)
a = a * 5
print("An array of 10 fives")
print(a) 12.- import numpy as np
a = np.array(range(30,71))
print(a) 13.- import numpy as np
a = np.array([x for x in range(30,71) if x % 2 == 0])
print("An array of even number from 30 to 70 is:")
print(a) 14.- import numpy as np
a = np.identity(3)
print(a) 15.- import numpy as np
rng = np.random.uniform(0, 1)
a = rng
print(a) 16.- import numpy as np
ran_num =np.random.normal(0,1,15)
print("Array of random numbers:")
print(ran_num) 17.- import numpy as np
a = np.array([(1, 2, 3, 4, 5), (5, 6, 7, 8, 9)])
m = np.asmatrix(a)
print("Original matrix: \n", m)
print("The size of the matrix is:")
print(m.shape) 18.- import numpy as np
a = np.identity(3)
m = np.asmatrix(a)
print(a) 19.- import numpy as np
a = np.ones([10,10])
a[1:9, 1:9] = 0
print(a) 20.- import numpy as np
a = np.zeros([5, 5])
a[0,0] = 1
a[1,1] = 2
a[2,2] = 3
a[3,3] = 4
a[4,4] = 5
print(a) 21.- import numpy as np
a = np.array([(1,2,3),(4,5,6),(7,8,9)])
print("Original array:")
print(a)
sum = np.sum(a)
sum_rows = np.sum(a, 1)
sum_column = np.sum(a, 0)
print("The sum of all elements is:")
print(sum)
print("The sum of each row is:\n 1st 2nd 3rd")
print(sum_rows)
print("The sum of each column is:\n 1st 2nd 3rd")
print(sum_column) 22.- import numpy as np
a = np.random.rand(4, 4)
print("Original array:")
print(a)
print()
b = a
print("Swapping first and last, second and third columns:")
print(np.fliplr(b)) 23.- import numpy as np
a = np.random.rand(4, 4)
print("Original array:")
print(a)
print()
b = a
print("Swapping first and last, second and third rows:")
print(np.flipud(b)) |
Beta Was this translation helpful? Give feedback.
-
import numpy as nup
arr = nup.array([4, 1, 2, 3])
if nup.isin(0, arr):
print("It has zero")
else:
print("Free from zeros") import numpy as nup
arr = nup.array([0, 1, 2, 3])
if nup.all(nup.isfinite(arr)):
print("It's finite")
else:
print("It's not finite") import numpy as nup
arr = nup.array([1, 1, 2, 3, nup.inf])
print("Positive infinite evaluation", nup.any(nup.isposinf(arr)))
print("Negative infinite evaluation", nup.any(nup.isneginf(arr))) |
Beta Was this translation helpful? Give feedback.
-
#1
import numpy as np
list = np.array([1,2,3,4,5])
#2
check = np.isin(0,list)
print(check)
#3
import numpy as np
list = np.array([1,2,3,4,5,0])
#4
check1 = np.not_equal(0,list)
print(check1)
#5
import numpy as np
list2 = np.array([1,2,3,4])
#6
check2 = np.isposinf(list2)
print(check2)
#7import numpy as np
list2 = np.array([1,2,3,4])
checkNeg = np.isneginf(list2)
print(checkNeg)
#8
import numpy as np
list= np.array([1,2,3,4,5])
check4=np.isnan(list)
print(list)
#9
import numpy as np
list= np.array([1,2,3,4,5])
#0
check5=np.iscomplex(list)
check6=np.isreal(list)
check7=np.isscalar(list)
list1=np.array([1,2,3,4])
list2=np.array([5,6,7,8])
#10
equal=np.array_equal(list1,list2)
greater=np.greater(list1,list2)
equal= np.equal(list1,list2)
print(equal)
print(greater)
list=np.array([5,6,7,8,4.4])
totalBytes=list.nbytes
print(totalBytes)
zeros=np.zeros(10, dtype=int)
ones=np.ones(10, dtype=int)
fives=np.array([5]*10)
finalArray= [[zeros],[ones],[fives]]
print(zeros)
print(ones)
print(fives)
print(finalArray)
##12
exercise12 = np.arange(30,71)
print(exercise12)
##13
exercise13= np.arange(30,71,2)
print(exercise13)
##14
exercise14=np.arange(9).reshape((3,3))
print(exercise14)
##15
from numpy.random import default_rng
exercise15=default_rng().random(1)
print(exercise15)
##16
from numpy.random import default_rng
exercise16= default_rng().random(15)
print(exercise16)
##17
arr=np.array([[1,2,3],[1,2,3]])
exercise17=arr.shape
print(exercise17)
##18
exercise18=np.eye(3)
print(exercise18)
##19
exercise19=np.ones((10,10), dtype=int)
exercise19[1:-1, 1:-1] = 0
print(exercise19)
##20
exercise20=np.diag([1,2,3,4,5])
print(exercise20)
##21
arr=np.array([[1,2,3,4,5],[6,5,8,9,2]])
exercise21=print(np.sum(arr))
##22
arr=np.array([[1,2,1,2],[4,3,4,5],[6,5,8,9],[6,7,6,7]])
arrRev=np.fliplr(arr)
print(arrRev)
##23
arr=np.array([[1,2,1,2],[4,3,4,5],[6,5,8,9],[6,7,6,7]])
arrRev=np.flipud(arr)
print(arrRev) |
Beta Was this translation helpful? Give feedback.
-
import numpy as np
x = np.array([[1, 2, 3],
[4, 6, 7],
[8, 0, 10]])
if np.all(x):
print("No zeros")
else:
print("Have zeros")
import numpy as np
x = np.array([[0, 0, 0],
[0, 0, 0],
[0, 0, 1]])
if np.any(x):
print("It have non-zero values")
else:
print("All values are zeros")
import numpy as np
x = np.array([[0, 0, np.inf],
[0, 0, 0],
[0, 0, 1]])
print(np.isfinite(x))
import numpy as np
x = np.array([np.NINF, 0, np.inf])
print(np.isinf(x[0]))
print(x[0])
print(np.isinf(x[1]))
print(x[1])
print(np.isinf(x[2]))
print(x[2])
import numpy as np
x = np.array([np.log(-1.),1.,np.inf])
print(np.isnan(x))
import numpy as np
x = np.array([[1+1j, 1+2j, 3],
[2j, 3.4, 0],
[0, 0, 1]])
print("Have complex numbers? \n",np.iscomplex(x))
print("\nHave real numbers? \n",np.isreal(x))
print("\n3.1 is scalar number? \n",np.isscalar(3.1))
import numpy as np
print("Equal within a tolerance?")
print(np.allclose([1], [1.00000001]))
import numpy as np
a = np.array([1,5,4,5])
b = np.array([2,3,4,5])
print("Is greater: ",np.greater(a,b))
print("Is greater equal: ",np.greater_equal(a,b))
print("Is less: ",np.less(a,b))
print("Is less equal: ",np.less_equal(a,b))
import numpy as np
a = np.array([1,3,4,4.999999999999])
b = np.array([1,3,4.0000000001,5])
print("Is equal: ",np.equal(a,b))
print("Is equal within a tolerance: ",np.allclose(a,b))
import numpy as np
a = np.array([1, 7, 13, 105])
print("%d bytes" % (a.size * a.itemsize))
import numpy as np
a = ([[np.zeros(10)],[np.ones(10)],[np.ones(10)*5]])
print(a)
import numpy as np
a = np.arange(30,70+1)
print(a)
import numpy as np
a = np.arange(30,70+1,2)
print(a)
import numpy as np
a = np.identity(3)
print(a)
import numpy as np
a = np.random.normal(0,1,1)
print(a)
import numpy as np
a = np.random.normal(0,1,15)
print(a)
import numpy as np
a = np.arange(10,22).reshape((3, 4))
print(a.shape)
import numpy as np
a = np.identity(3)
print(a)
import numpy as np
a = np.ones((10, 10))
a[1:-1, 1:-1] = 0
print(a)
import numpy as np
a = np.diag([1, 2, 3, 4, 5])
print(a)
import numpy as np
arr = np.array([[23,1],[42,30]])
print("Total sum",np.sum(arr))
print("Sum of each column:",np.sum(arr, axis=0))
print("Sum of each row:",np.sum(arr, axis=1))
import numpy as np
arr1 = np.arange(16).reshape(-1, 4)
print(arr1)
arr2 = nums[:, ::-1]
print(arr2)
import numpy as np
arr1 = np.arange(16).reshape(-1, 4)
print(arr1)
arr2 = nums[:, ::-1]
print(arr2) |
Beta Was this translation helpful? Give feedback.
-
#Task4
import numpy as np
a = np.array([[1, 0, np.nan, np.inf],[0,1,-np.nan,np.inf]])
print("Original array")
print(a)
print(" positive or negative infinity:")
print(np.isinf(a))
#task5
import numpy as np
a = np.array([1, 0, np.nan, np.inf])
print("Original array")
print(a)
print(" NaN:")
print(np.isnan(a))
#task6
import numpy as np
a = np.array([2+5j, 6+0j, 4.5, 3, 2, 2j])
print("Original array")
print(a)
print(" complex number:")
print(np.iscomplex(a))
print("Checking for real number:")
print(np.isreal(a))
print(" scalar type:")
print(np.isscalar(6.1))
print(np.isscalar([6])) |
Beta Was this translation helpful? Give feedback.
-
1.-
2.- import numpy as np
array = np.array([0, 0, 0, 0, 0, 89])
if not np.any(array):
print("has only 0´s")
else:
print("not has only 0´s") 3.- import numpy as np
a = np.array([1, 0, np.nan, np.inf])
print("Test a given array element-wise for finiteness :")
print(np.isfinite(a)) 4.- import numpy as np
a = np.array([1, 0, np.nan, np.inf])
print(np.isinf(a)) 5.- import numpy as np
a = np.array([1, 0, np.nan, np.inf])
print(np.isnan(a)) 6.- import numpy as np
a = np.array([1+1j, 1+0j, 4.5, 3, 2, 2j])
print("complex number: ", np.iscomplex(a))
print("real number: ", np.isreal(a))
print("scalar type: ", np.isscalar(7.8)) 7.- import numpy as np
print("equal with a tolerance: ", np.allclose([1.0, np.nan], [1.0, np.nan]))
print("equal with a tolerance: ", np.allclose([1e10,1e-8], [1.00001e10,1e-9])) 8.- import numpy as np
arr1 = np.array([4, 7])
arr2 = np.array([5, 9])
print("greater : ", np.greater(arr1, arr2))
print("greater_equal : ", np.greater_equal(arr1, arr2))
print("less : ", np.less(arr1, arr2))
print("less_equal : ", np.less_equal(arr1, arr2)) 9.- import numpy as np
arr1 = np.array([4, 7, 120, 25.0001])
arr2 = np.array([4, 7, 120, 25])
print("equal: ", np.equal(arr1, arr2))
print("equal within a tolerance:", np.allclose(arr1, arr2)) 10.- import numpy as np
arr1 = np.array([1, 7, 13, 105])
print("%d bytes" % (arr1.size * arr1.itemsize)) 11.- import numpy as np
arr1 = np.zeros(10)
arr2 = np.ones(10)
arr3 = np.ones(10)*5
print(arr1, "\n", arr2, "\n", arr3) 12.- import numpy as np
print(np.arange(30, 71)) 13.- import numpy as np
print(np.arange(30, 71, 2)) 14.- import numpy as np
print(np.identity(3)) 15.- import numpy as np
print(np.random.normal(0,1,1)) 16.- import numpy as np
print(np.random.normal(0,1,15)) 17.- import numpy as np
matrix = np.arange(13,22).reshape((3, 3))
print(matrix.shape) 18.- import numpy as np
print(np.eye(3)) 19.- import numpy as np
matrix = np.ones((10, 10))
matrix[1:-1, 1:-1] = 0
print(matrix) 20.-
21.- import numpy as np
x = np.array([[0,1],[2,3],[4,5]])
print("Sum of all elements:", np.sum(x))
print("Sum of each column:", np.sum(x, axis=0))
print("Sum of each row:", np.sum(x, axis=1)) 22.- import numpy as np
matrix = np.arange(16, dtype='int').reshape(4, 4)
newmatrix = matrix[:, ::-1]
print(matrix)
print(newmatrix) 23.- import numpy as np
matrix = np.arange(16, dtype='int').reshape(4, 4)
newmatrix = matrix[:, ::-1]
print(matrix)
print(newmatrix) |
Beta Was this translation helpful? Give feedback.
-
#1.Write a NumPy program to test whether none of the elements of a given array is zero. import numpy as np
arr = np.array([1, 2, 3, 4, 5])
if np.all(arr):
print("No zeros")
else:
print("Yes zeros are there") 2.Write a NumPy program to test whether any of the elements of a given array is non-zero. import numpy as np
arr = np.array([[0,0,0,0,0],[0,0,0,0,0]])
if np.all(arr):
print("No zeros")
else:
print("Yes zeros are there") 3.Write a NumPy program to test a given array element-wise for finiteness (not infinity or not a Number). import numpy as np
a = np.array([1, 0, np.nan, np.inf])
print("Original array")
print(a)
print("Test a given array element-wise for finiteness :")
print(np.isfinite(a)) 4.Write a NumPy program to test element-wise for positive or negative infinity. import numpy as np
a = np.array([1, 0, np.nan, np.inf])
print("Original array")
print(a)
print("Test element-wise for positive or negative infinity:")
print(np.isinf(a)) 5.Write a NumPy program to test element-wise for NaN of a given array. import numpy as np
a = np.array([1, 0, np.nan, np.inf])
print("Original array")
print(a)
print("Test element-wise for NaN:")
print(np.isnan(a)) 6.Write a NumPy program to test element-wise for complex number, real number of a given array. Also test whether a given number is a scalar type or not. import numpy as np
a = np.array([1+1j, 1+0j, 4.5, 3, 2, 2j])
print("Original array")
print(a)
print("Checking for complex number:")
print(np.iscomplex(a))
print("Checking for real number:")
print(np.isreal(a))
print("Checking for scalar type:")
print(np.isscalar(3.1))
print(np.isscalar([3.1])) 7.Write a NumPy program to test whether two arrays are element-wise equal within a tolerance. import numpy as np
print("Test if two arrays are element-wise equal within a tolerance:")
print(np.allclose([1e10,1e-7], [1.00001e10,1e-8]))
print(np.allclose([1e10,1e-8], [1.00001e10,1e-9]))
print(np.allclose([1e10,1e-8], [1.0001e10,1e-9]))
print(np.allclose([1.0, np.nan], [1.0, np.nan]))
print(np.allclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)) 8Write a NumPy program to create an element-wise comparison (greater, greater_equal, less and less_equal) of two given arrays.. import numpy as np
x = np.array([3, 5])
y = np.array([2, 5])
print("Original numbers:")
print(x)
print(y)
print("Comparison - greater")
print(np.greater(x, y))
print("Comparison - greater_equal")
print(np.greater_equal(x, y))
print("Comparison - less")
print(np.less(x, y))
print("Comparison - less_equal")
print(np.less_equal(x, y)) 9.Write a NumPy program to create an element-wise comparison (equal, equal within a tolerance) of two given arrays. import numpy as np
x = np.array([72, 79, 85, 90, 150, -135, 120, -10, 60, 100])
y = np.array([72, 79, 85, 90, 150, -135, 120, -10, 60, 100.000001])
print("Original numbers:")
print(x)
print(y)
print("Comparison - equal:")
print(np.equal(x, y))
print("Comparison - equal within a tolerance:")
print(np.allclose(x, y)) 10.Write a NumPy program to create an array with the values 1, 7, 13, 105 and determine the size of the memory occupied by the ##array. import numpy as np
X = np.array([1, 7, 13, 105])
print("Original array:")
print(X)
print("Size of the memory occupied by the said array:")
print("%d bytes" % (X.size * X.itemsize))
11.Write a NumPy program to create an array of 10 zeros,10 ones, 10 fives. import numpy as np
array=np.zeros(10)
print("An array of 10 zeros:")
print(array)
array=np.ones(10)
print("An array of 10 ones:")
print(array)
array=np.ones(10)*5
print("An array of 10 fives:")
print(array) 12.Write a NumPy program to create an array of the integers from 30 to70. import numpy as np
array=np.arange(30,71)
print("Array of the integers from 30 to70")
print(array)
```python
13.Write a NumPy program to create an array of all the even integers from 30 to 70.
```python
import numpy as np
array=np.arange(30,71,2)
print("Array of all the even integers from 30 to 70")
print(array) import numpy as np
array_2D=np.identity(3)
print('3x3 matrix:')
print(array_2D) import numpy as np
rand_num = np.random.normal(0,1,1)
print("Random number between 0 and 1:")
print(rand_num) import numpy as np
rand_num = np.random.normal(0,1,15)
print("15 random numbers from a standard normal distribution:")
print(rand_num) 17 import numpy as np
m= np.arange(10,22).reshape((3, 4))
print("Original matrix:")
print(m)
print("Number of rows and columns of the said matrix:")
print(m.shape)
import numpy as np
x = np.ones((10, 10))
x[1:-1, 1:-1] = 0
print(x) 20 import numpy as np
a = np.diag([1, 2, 3, 4, 5])
print(a) import numpy as np
nums = np.arange(16, dtype='int').reshape(-1, 4)
print("Original array:")
print(nums)
print("\nNew array after swapping first and last rows of the said array:")
new_nums = nums[::-1]
#print(new_nums) import numpy as np
nums = np.arange(16, dtype='int').reshape(-1, 4)
print("Original array:")
print(nums)
print("\nNew array after swapping first and last columns of the said array:")
new_nums = nums[:, ::-1]
print(new_nums) import numpy as np
nums = np.arange(16, dtype='int').reshape(-1, 4)
print("Original array:")
print(nums)
print("\nNew array after swapping first and last columns of the said array:")
new_nums = nums[:, ::-1]
print(new_nums) |
Beta Was this translation helpful? Give feedback.
-
#TASK7
import numpy as np
print("Test if two arrays are element-wise equal within a tolerance:")
print(np.allclose([1e10,1e-7], [1.00001e10,1e-8]))
print(np.allclose([1e10,1e-8], [1.00001e10,1e-9]))
print(np.allclose([1e10,1e-8], [1.0001e10,1e-9]))
print(np.allclose([1.0, np.nan], [1.0, np.nan]))
print(np.allclose([1.0, np.nan], [1.0, np.nan], equal_nan=True))
#TASK8
import numpy as np
x = np.array([3, 5])
y = np.array([2, 5])
print("Original numbers:")
print(x)
print(y)
print("Comparison - greater")
print(np.greater(x, y))
print("Comparison - greater_equal")
print(np.greater_equal(x, y))
print("Comparison - less")
print(np.less(x, y))
print("Comparison - less_equal")
print(np.less_equal(x, y))
#TASK9
import numpy as np
x = np.array([72, 79, 85, 90, 150, -135, 120, -10, 60, 100])
y = np.array([72, 79, 85, 90, 150, -135, 120, -10, 60, 100.000001])
print("Original numbers:")
print(x)
print(y)
print("Comparison - equal:")
print(np.equal(x, y))
print("Comparison - equal within a tolerance:")
print(np.allclose(x, y)) |
Beta Was this translation helpful? Give feedback.
-
#TASK10
import numpy as np
arr = np.array([1, 7,13,105])
print("%d bytes" % (arr.size * arr.itemsize))
#TASK11
import numpy as np
arr1 = np.zeros(10)
arr2 = np.ones(10)
arr3 = np.ones(10)*5
print(arr1, "\n", arr2, "\n", arr3)
#TASK12
import numpy as np
array=np.arange(30,71)
print(" integers from 30 to70")
print(array)
#TASK13
import numpy as np
array=np.arange(30,71,2)
print(" integers from 30 to70" )
print(array)
#TASK14
import numpy as np
array=np.identity(3,dtype=int)
print('3x3 matrix:')
print(array)
#TASK15
import numpy as np
array=np.random.uniform(0,1)
print(array)
#TASK16
import numpy as np
array=np.random.normal(0,1,15)
print(array)
|
Beta Was this translation helpful? Give feedback.
-
#TASK17
import numpy as np
arr = np.array([[1, 7],[2,3],[4,5]])
print(np.shape(arr))
#TASK18
import numpy as np
print(np.identity(3,dtype=int))
#TASK19
import numpy as np
arr = np.ones((10,10))*10
arr[1:-1, 1:-1,] = 0
print(arr)
#Task20
import numpy as np
arr = np.zeros((5, 5))
for i in range(len(arr)):
arr[i][i] = i+1
print(arr)
#TASK21
import numpy as np
arr = np.array([[1, 3, 4], [1, 2, 3]])
print(f"{arr} \n")
print(f"{np.sum(arr, axis=1)} is the sum of each row \n{np.sum(arr, axis=0)} is the sum of each column")
#TASK22
import numpy as np
a = np.random.rand(4,4)
print(F"Array A: \n{a}")
a[:,(0,3)] = a[:,(3,0)]
a[:,(1,2)] = a[:,(2,1)]
print(f"Array A after column swap: \n{a}")
#TASK23
import numpy as np
a = np.random.rand(4,4)
print(F"Array A: \n{a}")
a[(0,3),:] = a[(3,0),:]
a[(1,2),:] = a[(2,1),:]
print(f"Array A after column swap: \n{a}")
|
Beta Was this translation helpful? Give feedback.
Uh oh!
There was an error while loading. Please reload this page.
Uh oh!
There was an error while loading. Please reload this page.
-
Write a NumPy program to test whether none of the elements of a given array is zero.
Write a NumPy program to test whether any of the elements of a given array is non-zero.
Write a NumPy program to test a given array element-wise for finiteness (not infinity or not a Number).
Write a NumPy program to test element-wise for positive or negative infinity.
Write a NumPy program to test element-wise for NaN of a given array.
Write a NumPy program to test element-wise for complex number, real number of a given array. Also test whether a given number is a scalar type or not.
Write a NumPy program to test whether two arrays are element-wise equal within a tolerance.
Write a NumPy program to create an element-wise comparison (greater, greater_equal, less and less_equal) of two given arrays.
Write a NumPy program to create an element-wise comparison (equal, equal within a tolerance) of two given arrays.
Write a NumPy program to create an array with the values 1, 7, 13, 105 and determine the size of the memory occupied by the array.
Write a NumPy program to create an array of 10 zeros,10 ones, 10 fives.
Write a NumPy program to create an array of the integers from 30 to70.
Write a NumPy program to create an array of all the even integers from 30 to 70.
Write a NumPy program to create a 3x3 identity matrix.
Write a NumPy program to generate a random number between 0 and 1.
Write a NumPy program to generate an array of 15 random numbers from a standard normal distribution.
Write a NumPy program to find the number of rows and columns of a given matrix.
Write a NumPy program to create a 3x3 identity matrix, i.e. diagonal elements are 1, the rest are 0.
Write a NumPy program to create a 10x10 matrix, in which the elements on the borders will be equal to 1, and inside 0.
Write a NumPy program to create a 5x5 zero matrix with elements on the main diagonal equal to 1, 2, 3, 4, 5.
Write a NumPy program to compute sum of all elements, sum of each column and sum of each row of a given array.
Write a NumPy program to create a 4x4 array, now create a new array from the said array swapping first and last, second and third columns.
Write a NumPy program to create a 4x4 array, now create a new array from the said array swapping first and last, second and third columns.
Beta Was this translation helpful? Give feedback.
All reactions