This example program was built on
- pysc2 (Deepmind) [https://github.com/deepmind/pysc2]
- baselines (OpenAI) [https://github.com/openai/baselines]
- s2client-proto (Blizzard) [https://github.com/Blizzard/s2client-proto]
- Tensorflow 1.3 (Google) [https://github.com/tensorflow/tensorflow]
- CollectMineralShards with Deep Q Network
The easiest way to get PySC2 is to use pip:
$ pip install pysc2
Also, you have to install baselines
library.
$ pip install baselines
You have to purchase StarCraft II and install it. Or even the Starter Edition will work.
http://us.battle.net/sc2/en/legacy-of-the-void/
Follow Blizzard's documentation to
get the linux version. By default, PySC2 expects the game to live in
~/StarCraftII/
.
Download the ladder maps
and the mini games
and extract them to your StarcraftII/Maps/
directory.
$ python train_mineral_shards.py --algorithm=acktr
$ python enjoy_mineral_shards.py
$ python train_mineral_shards.py --algorithm=deepq --prioritized=True --dueling=True --timesteps=2000000 --exploration_fraction=0.2
$ python train_mineral_shards.py --algorithm=acktr --num_cpu=16--timesteps=2000000
Description | Default | Parameter Type | |
---|---|---|---|
map | Gym Environment | CollectMineralShards | string |
log | logging type : tensorboard, stdout | tensorboard | string |
algorithm | Currently, support 2 algorithms : deepq, acktr | acktr | string |
timesteps | Total training steps | 2000000 | int |
exploration_fraction | exploration fraction | 0.5 | float |
prioritized | Whether using prioritized replay for DQN | False | boolean |
dueling | Whether using dueling network for DQN | False | boolean |
num_cpu | number of agents for A3C(acktr) | 4 | int |