Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 

README.md

InvitationModel

Implementation of domain adaptation algorithm based on the paper "Latent Domain Translation Models in Mix-of-Domains Haystack" http://www.aclweb.org/anthology/C14-1182

This work was supported by "STW Open Technologieprogramma" grant under project name "Data-Powered Domain-Specific Translation Services On Demand".

Compilation

mvn package

This will generate target/invitationmodel-1.0.jar

Usage

java -cp target/invitationmodel-1.0.jar nl.uva.illc.dataselection.InvitationModel

-cin,--in-domain-corpus <arg>     In-domain corpus name
-cmix,--mix-domain-corpus <arg>   Mix-domain corpus name
-i,--max-iterations <arg>         Maximum Iterations
-src,--src-language <arg>         Source Language
-trg,--trg-language <arg>         Target Language
 -th,--threshold <arg>             This threshold deicdes which sentences
                                   updates translation tables. Default is
                                   0.5
 -cf,--conv_threshold <arg>        This threshold decide if the
                                   convergence is reached. Default is
                                   0.00001
Example

If you have a parallel indomain corpus in-domain.l1, indomain.l2 and a parallel mix-domain corpus mixdomain.l1, mixdomain.l2. Then you can execute this utility as follow:

java -cp target/invitationmodel-1.0.jar nl.uva.illc.dataselection.InvitationModel -cin indomain -cmix mixdomain -src l1 -trg l2 -i 10 -th 0.5 -cf 0.00001

About

Implementation of domain adaptation algorithm based on the paper "Latent Domain Translation Models in Mix-of-Domains Haystack" http://www.aclweb.org/anthology/C14-1182

Resources

License

Releases

No releases published

Packages

No packages published

Languages

You can’t perform that action at this time.