Skip to content

Initiation a l'application de Machine Learning a travers le modelisation topographique

Notifications You must be signed in to change notification settings

anjaragit/ML_VR3D

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine Learning VR3D Project

INTRO

c'est projet a pour but d'optimiser ou de reduire le temps consommer par un dessinateur 3D ou 2D pour trace ou convertir un plan 2D en 3D et vice versa.Grace a l'utilisation de la Deep Learning on ait possible de faire avec de erreur le plus petit que faite par un etre humain .Donc a partir de maintenant , juste en une seule clique bouton et attend quelque minute , vous avez fait le travail de plus de dizaine de dessineur.

made-with-python Code style: black Imports: isort Checked with mypy made-with-Markdown made-with-bash

Project structure

├── config                       <- Directory containing configuration files
├── README.md                 <- The top-level README for developers using this project.
├── dataset                   <- Sample data from different sources for unit and integration tests
│   ├── LasFile              <- Data filter
│   └── PointCloud                   <- The original data.
│
├── docs               
│
├── models                    <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks                 <- Jupyter notebooks. 
│
├── reports                   <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures               <- Generated graphics and figures to be used in reporting
│
├── requirements.txt          <- The requirements 
│                         
│
├── setup.py                  <- Make this project pip installable with `pip install -e`
├── tests                     <- The pytest tests root directory for unit / integration / e2e tests
├── src/ML_VR3D                
│   ├── __init__.py    
│   │
│   ├── util                  <- Scripts with common processing
│   │
│   ├── data                  <- Scripts to download or generate data
|   |   ├── __init__.py    
│   │   └── common 
|   |   |   |_ Labelisation.py          <- script labelize automaticaly data
│   │   └── H5_file             <- Transform xyz value to H5 and extracte new feature       
│   │
│   │
│   ├── iamodels              <- Scripts to train IA models and then use trained models to make
│   │   │                       predictions
|   |   ├── __init__.py    
│   │   ├── predict_model.py
│   │   └── train_model.py
│   └── visualization         <- Scripts to create exploratory and results oriented visualizations
│       └── visualize.py

Development

Prerequisites

All you need is the following configuration already installed:

sudo apt-get update; sudo apt-get install make build-essential libssl-dev zlib1g-dev \
libbz2-dev libreadline-dev libsqlite3-dev wget curl llvm \
libncursesw5-dev xz-utils tk-dev libxml2-dev libxmlsec1-dev libffi-dev liblzma-dev
  • pyenv installed and available in path pyenv installation with Prerequisites
  • For tests/integration tests with mongoDB, you need Docker

Add format, lint code tools

Autolint/Format code with Black in IDE:

Code style: black

Checked optional type with Mypy PEP 484

Checked with mypy

Configure Mypy to help annotating/hinting type with Python Code. It's very useful for IDE and for catching errors/bugs early.

  • Install mypy plugin for intellij
  • Adjust the plugin with the following options:
    "--follow-imports=silent",
    "--show-column-numbers",
    "--ignore-missing-imports",
    "--disallow-untyped-defs",
    "--check-untyped-defs"
    
  • Work in Progress to adjust Mypy preferences
  • Documentation: Type hints cheat sheet (Python 3)
  • Add same mypy option for vscode in Preferences: Open User Settings

Install Sonarlint plugin

Detect Code Quality and Security issues on the fly

Isort

Imports: isort

{
    "editor.formatOnSave": true,
    "python.formatting.provider": "black",
    "[python]": {
        "editor.codeActionsOnSave": {
            "source.organizeImports": true
        }
    }
}
  • isort configuration for pycharm. See Set isort and black formatting code in pycharm
  • You can use make lint command to check flake8/mypy rules & apply automatically format black and isort to the code with the previous configuration
isort . --virtual-env dspioenv

PROJECT SCOPE

Le model de base de ce project et le pointnet, visible sur Github Pointnet

Exemple and Integration

About

Initiation a l'application de Machine Learning a travers le modelisation topographique

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published