-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
270 lines (215 loc) · 11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import argparse
import numpy as np
import os
import json
import glob
import cv2
import time
import datetime
import random
import tensorflow as tf
from tensorflow.python.framework import ops
from tensorflow.python.framework import dtypes
import generator
import discriminator
FLAGS = tf.app.flags.FLAGS
def do_preprocessing(input, height, width):
input = tf.image.resize_images(input, [height, width])
input = tf.cast(input, tf.float32)
input = tf.subtract(input, tf.constant(128.0))
input = tf.divide(input, tf.constant(128.0))
return input
def get_train_val_batch(train_list, val_list):
train_name = ops.convert_to_tensor(train_list, dtype=dtypes.string)
val_name = ops.convert_to_tensor(val_list, dtype=dtypes.string)
train_queue = tf.train.slice_input_producer([train_name], shuffle=True)
val_queue = tf.train.slice_input_producer([val_name], shuffle=True)
# training data
file_content = tf.read_file(train_queue[0])
train_image = tf.image.decode_jpeg(file_content, channels=3)
train_image = do_preprocessing(train_image, FLAGS.load_size, FLAGS.load_size * 2)
# split input and gt
if FLAGS.which_direction == 'AtoB':
train_input_image = train_image[:, :FLAGS.load_size, :]
train_gt_image = train_image[:, FLAGS.load_size:, :]
else:
train_input_image = train_image[:, FLAGS.load_size:, :]
train_gt_image = train_image[:, :FLAGS.load_size, :]
# random crop and flip
concat_image = tf.concat([train_input_image, train_gt_image], 2)
concat_image = tf.random_crop(concat_image, [FLAGS.fine_size, FLAGS.fine_size, 6])
concat_image = tf.image.random_flip_left_right(concat_image)
train_input_image = concat_image[:, :, :3]
train_gt_image = concat_image[:, :, 3:]
train_input_image.set_shape([FLAGS.fine_size, FLAGS.fine_size, 3])
train_gt_image.set_shape([FLAGS.fine_size, FLAGS.fine_size, 3])
# validation data
file_content = tf.read_file(val_queue[0])
val_image = tf.image.decode_jpeg(file_content, channels=3)
val_image = do_preprocessing(val_image, FLAGS.fine_size, FLAGS.fine_size * 2)
# split input and gt
if FLAGS.which_direction == 'AtoB':
val_input_image = val_image[:, :FLAGS.fine_size, :]
val_gt_image = val_image[:, FLAGS.fine_size:, :]
else:
val_input_image = val_image[:, FLAGS.fine_size:, :]
val_gt_image = val_image[:, :FLAGS.fine_size, :]
val_input_image.set_shape([FLAGS.fine_size, FLAGS.fine_size, 3])
val_gt_image.set_shape([FLAGS.fine_size, FLAGS.fine_size, 3])
# queue
min_after_dequeue = 100
capacity = min_after_dequeue + 4 * FLAGS.batch_size
train_images = tf.train.shuffle_batch(
[train_input_image, train_gt_image],
batch_size=FLAGS.batch_size
, num_threads=4
, capacity=capacity
, min_after_dequeue=min_after_dequeue
)
val_images = tf.train.batch(
[val_input_image, val_gt_image],
batch_size=FLAGS.batch_size
# ,num_threads=1
)
return train_images, val_images
def train(argv=None):
with tf.device("/%s:0" % (FLAGS.device)):
# Generator
input_image = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.fine_size, FLAGS.fine_size, 3])
gt_image = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.fine_size, FLAGS.fine_size, 3])
generated_image = generator.get_inference(input_image, FLAGS, reuse=False, drop_prob=0.5)
###### Discriminator
# real
real_AB = tf.concat([input_image, gt_image], 3)
real_logits = discriminator.get_inference(real_AB, FLAGS, reuse=False)
loss_d_real = discriminator.get_softmax_loss(logits=real_logits, labels=tf.ones_like(real_logits), FLAGS=FLAGS)
# fake
fake_AB = tf.concat([input_image, generated_image], 3)
fake_logits = discriminator.get_inference(fake_AB, FLAGS, reuse=True)
loss_d_fake = discriminator.get_softmax_loss(logits=fake_logits, labels=tf.zeros_like(fake_logits), FLAGS=FLAGS)
# discriminator loss
loss_d = (loss_d_real + loss_d_fake) / 2
# generator loss
loss_g_fake = discriminator.get_softmax_loss(logits=fake_logits, labels=tf.ones_like(fake_logits), FLAGS=FLAGS)
loss_l1_train = generator.get_l1_loss(generated_image, gt_image, FLAGS)
loss_g = loss_g_fake + FLAGS.lambda_ * loss_l1_train
# loss_g = loss_g_fake
# split variables
all_vars = tf.trainable_variables()
vars_d = [k for k in all_vars if "discriminator" in k.name]
vars_g = [k for k in all_vars if "generator" in k.name]
# optimizer
train_d_optim = tf.train.AdamOptimizer(0.0002, beta1=0.5).minimize(loss_d, var_list=vars_d)
train_g_optim = tf.train.AdamOptimizer(0.0002, beta1=0.5).minimize(loss_g, var_list=vars_g)
# validation
val_input_image = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.fine_size, FLAGS.fine_size, 3])
val_gt_image = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.fine_size, FLAGS.fine_size, 3])
val_generated_image = generator.get_inference(val_input_image, FLAGS, reuse=True, drop_prob=0.5, is_train=False)
# add summary
sum_l1 = tf.summary.scalar('train l1 loss', loss_l1_train)
sum_d_real = tf.summary.scalar('loss_d_real', loss_d_real)
sum_d_fake = tf.summary.scalar('loss_d_fake', loss_d_fake)
sum_g_fake = tf.summary.scalar('loss_g_fake', loss_g_fake)
sum_i_train = tf.summary.image('train_images', tf.concat([input_image, gt_image, generated_image], 2),
max_outputs=5)
sum_i_val = tf.summary.image('validation_images',
tf.concat([val_input_image, val_gt_image, val_generated_image], 2), max_outputs=5)
# Build the summary operation based on the TF collection of Summaries.
train_summary_op = tf.summary.merge([sum_l1, sum_d_real, sum_d_fake, sum_g_fake, sum_i_train])
val_summary_op = sum_i_val
#########################
# get data
train_list, val_list = get_train_val_list()
total_train_size = len(train_list)
total_val_size = len(val_list)
print
'train list - ', total_train_size
print
'validation list - ', total_val_size
num_iteration = total_train_size / FLAGS.batch_size
print
'total train num iteration - ', num_iteration
num_val_iteration = total_val_size / FLAGS.batch_size
print
'total val num iteration - ', num_val_iteration
train_images, val_images = get_train_val_batch(train_list, val_list)
# Create a saver.
saver = tf.train.Saver(tf.global_variables())
gpu_options = tf.GPUOptions(allow_growth=True)
with tf.Session(config=tf.ConfigProto(log_device_placement=False, allow_soft_placement=True,
gpu_options=gpu_options)) as sess:
# initialize the variables
sess.run(tf.global_variables_initializer())
# load pretrained model
if FLAGS.pretrained_model:
point = tf.train.latest_checkpoint(FLAGS.train_dir + '_' + FLAGS.dataset)
print
'check point - ', point
saver.restore(sess, point)
# summary
summary_writer = tf.summary.FileWriter(FLAGS.train_dir + '_' + FLAGS.dataset, sess.graph)
# initialize the queue threads to start to shovel data
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
count = 0
# then train discrimnator and generator iteratively
for i in range(FLAGS.num_epoch):
for j in range(num_iteration):
count += 1
train_info = sess.run(train_images)
train_input_images = train_info[0]
train_gt_images = train_info[1]
# train discriminator & get summary
_, output_d_loss, output_summary = sess.run([train_d_optim, loss_d, train_summary_op],
feed_dict={input_image: train_input_images,
gt_image: train_gt_images})
# train generator several times
for k in range(0, 1):
_, output_g_loss, output_fake_logits, output_real_logits = sess.run(
[train_g_optim, loss_g, fake_logits, real_logits],
feed_dict={input_image: train_input_images, gt_image: train_gt_images})
ts = time.time()
st = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S')
print
'%s, epoch[%d] iter[%d], d loss - %f, g loss - %f' % (st, i, j, output_d_loss, output_g_loss)
summary_writer.add_summary(output_summary, count)
# validation
if count % 100 == 0:
# test only several images
for j in range(0, 10):
val_info = sess.run(val_images)
val_input_images = val_info[0]
val_gt_images = val_info[1]
# print test_input_image.shape
output_summary = sess.run(val_summary_op, feed_dict={val_input_image: val_input_images,
val_gt_image: val_gt_images})
summary_writer.add_summary(output_summary, count)
# Save the model checkpoint periodically.
if count != 0 and count % 1000 == 0:
checkpoint_path = os.path.join(FLAGS.train_dir + '_' + FLAGS.dataset, '%s.ckpt' % (FLAGS.dataset))
saver.save(sess, checkpoint_path, global_step=count)
# stop our queue threads and properly close the session
coord.request_stop()
coord.join(threads)
sess.close()
def get_train_val_list():
train_image_root = 'datasets/' + FLAGS.dataset + '/train/'
train_list = glob.glob(train_image_root + '*.jpg')
val_image_root = 'datasets/' + FLAGS.dataset + '/val/'
val_list = glob.glob(val_image_root + '*.jpg')
return train_list, val_list
if __name__ == '__main__':
tf.app.flags.DEFINE_string('dataset', 'facades', """dataset""")
tf.app.flags.DEFINE_integer('batch_size', 1, """The batch size to use.""")
tf.app.flags.DEFINE_integer('load_size', 286, """load size.""")
tf.app.flags.DEFINE_integer('fine_size', 256, """fine size.""")
tf.app.flags.DEFINE_integer('num_epoch', 200, """num_epoch.""")
tf.app.flags.DEFINE_string('which_direction', 'AtoB', """AtoB or BtoA""")
tf.app.flags.DEFINE_integer('lambda_', 100, """weight for l1 loss""")
tf.app.flags.DEFINE_string('train_dir', './result', """train_dir.""")
tf.app.flags.DEFINE_bool('pretrained_model', False, """pretrained model""")
tf.app.flags.DEFINE_string('device', 'cpu', """device""")
log_files = glob.glob(FLAGS.train_dir + '_' + FLAGS.dataset + '/events*')
for f in log_files:
os.remove(f)
tf.app.run(main=train)