Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix batching for BigQueryToPostgresOperator #39233

Merged
merged 1 commit into from
Apr 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -133,4 +133,5 @@ def execute(self, context: Context) -> None:
rows=rows,
target_fields=self.selected_fields,
replace=self.replace,
commit_every=self.batch_size,
)
Original file line number Diff line number Diff line change
Expand Up @@ -17,34 +17,145 @@
# under the License.
"""
Example Airflow DAG for Google BigQuery service.

This DAG relies on the following OS environment variables

* AIRFLOW__API__GOOGLE_KEY_PATH - Path to service account key file. Note, you can skip this variable if you
run this DAG in a Composer environment.
"""

from __future__ import annotations

import logging
import os
from datetime import datetime

import pytest
from pendulum import duration

from airflow.decorators import task
from airflow.models import Connection
from airflow.models.dag import DAG
from airflow.operators.bash import BashOperator
from airflow.providers.common.sql.operators.sql import SQLExecuteQueryOperator
from airflow.providers.google.cloud.hooks.compute import ComputeEngineHook
from airflow.providers.google.cloud.hooks.compute_ssh import ComputeEngineSSHHook
from airflow.providers.google.cloud.operators.bigquery import (
BigQueryCreateEmptyDatasetOperator,
BigQueryCreateEmptyTableOperator,
BigQueryDeleteDatasetOperator,
)

try:
from airflow.providers.google.cloud.transfers.bigquery_to_postgres import BigQueryToPostgresOperator
except ImportError:
pytest.skip("PostgreSQL not available", allow_module_level=True)
from airflow.providers.google.cloud.operators.compute import (
ComputeEngineDeleteInstanceOperator,
ComputeEngineInsertInstanceOperator,
)
from airflow.providers.google.cloud.transfers.bigquery_to_postgres import BigQueryToPostgresOperator
from airflow.providers.ssh.operators.ssh import SSHOperator
from airflow.settings import Session
from airflow.utils.trigger_rule import TriggerRule

ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID")
PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "example-project")
DAG_ID = "example_bigquery_to_postgres"

DATASET_NAME = f"dataset_{DAG_ID}_{ENV_ID}"
DATA_EXPORT_BUCKET_NAME = os.environ.get("GCP_BIGQUERY_EXPORT_BUCKET_NAME", "INVALID BUCKET NAME")
TABLE = "table_42"
destination_table = "postgres_table_test"
REGION = "us-central1"
ZONE = REGION + "-a"
NETWORK = "default"
CONNECTION_ID = f"connection_{DAG_ID}_{ENV_ID}".replace("-", "_")
CONNECTION_TYPE = "postgres"

BIGQUERY_DATASET_NAME = f"dataset_{DAG_ID}_{ENV_ID}"
BIGQUERY_TABLE = "test_table"
SOURCE_OBJECT_NAME = "gs://airflow-system-tests-resources/bigquery/salaries_1k.csv"
BATCH_SIZE = 500
UPLOAD_DATA_TO_BIGQUERY = f"""
if [ $AIRFLOW__API__GOOGLE_KEY_PATH ]; then \
gcloud auth activate-service-account --key-file=$AIRFLOW__API__GOOGLE_KEY_PATH; \
fi;

bq load --project_id={PROJECT_ID} --location={REGION} \
--source_format=CSV {BIGQUERY_DATASET_NAME}.{BIGQUERY_TABLE} {SOURCE_OBJECT_NAME} \
emp_name:STRING,salary:FLOAT
"""

DB_NAME = "testdb"
DB_PORT = 5432
DB_USER_NAME = "root"
DB_USER_PASSWORD = "demo_password"
SETUP_POSTGRES_COMMAND = f"""
sudo apt update &&
sudo apt install -y docker.io &&
sudo docker run -d -p {DB_PORT}:{DB_PORT} --name {DB_NAME} \
-e PGUSER={DB_USER_NAME} \
-e POSTGRES_USER={DB_USER_NAME} \
-e POSTGRES_PASSWORD={DB_USER_PASSWORD} \
-e POSTGRES_DB={DB_NAME} \
postgres
"""
SQL_TABLE = "test_table"
SQL_CREATE_TABLE = f"CREATE TABLE IF NOT EXISTS {SQL_TABLE} (emp_name VARCHAR(64), salary FLOAT)"

GCE_MACHINE_TYPE = "n1-standard-1"
GCE_INSTANCE_NAME = f"instance-{DAG_ID}-{ENV_ID}".replace("_", "-")
GCE_INSTANCE_BODY = {
"name": GCE_INSTANCE_NAME,
"machine_type": f"zones/{ZONE}/machineTypes/{GCE_MACHINE_TYPE}",
"disks": [
{
"boot": True,
"device_name": GCE_INSTANCE_NAME,
"initialize_params": {
"disk_size_gb": "10",
"disk_type": f"zones/{ZONE}/diskTypes/pd-balanced",
"source_image": "projects/debian-cloud/global/images/debian-11-bullseye-v20220621",
},
}
],
"network_interfaces": [
{
"access_configs": [{"name": "External NAT", "network_tier": "PREMIUM"}],
"stack_type": "IPV4_ONLY",
"subnetwork": f"regions/{REGION}/subnetworks/default",
}
],
}
FIREWALL_RULE_NAME = f"allow-http-{DB_PORT}"
CREATE_FIREWALL_RULE_COMMAND = f"""
if [ $AIRFLOW__API__GOOGLE_KEY_PATH ]; then \
gcloud auth activate-service-account --key-file=$AIRFLOW__API__GOOGLE_KEY_PATH; \
fi;

if [ -z gcloud compute firewall-rules list --filter=name:{FIREWALL_RULE_NAME} --format="value(name)" ]; then \
gcloud compute firewall-rules create {FIREWALL_RULE_NAME} \
--project={PROJECT_ID} \
--direction=INGRESS \
--priority=100 \
--network={NETWORK} \
--action=ALLOW \
--rules=tcp:{DB_PORT} \
--source-ranges=0.0.0.0/0
else
echo "Firewall rule {FIREWALL_RULE_NAME} already exists."
fi
"""
DELETE_FIREWALL_RULE_COMMAND = f"""
if [ $AIRFLOW__API__GOOGLE_KEY_PATH ]; then \
gcloud auth activate-service-account --key-file=$AIRFLOW__API__GOOGLE_KEY_PATH; \
fi; \
if [ gcloud compute firewall-rules list --filter=name:{FIREWALL_RULE_NAME} --format="value(name)" ]; then \
gcloud compute firewall-rules delete {FIREWALL_RULE_NAME} --project={PROJECT_ID} --quiet; \
fi;
"""
DELETE_PERSISTENT_DISK_COMMAND = f"""
if [ $AIRFLOW__API__GOOGLE_KEY_PATH ]; then \
gcloud auth activate-service-account --key-file=$AIRFLOW__API__GOOGLE_KEY_PATH; \
fi;

gcloud compute disks delete {GCE_INSTANCE_NAME} --project={PROJECT_ID} --zone={ZONE} --quiet
"""


log = logging.getLogger(__name__)


with DAG(
DAG_ID,
Expand All @@ -53,41 +164,160 @@
catchup=False,
tags=["example", "bigquery"],
) as dag:
create_bigquery_dataset = BigQueryCreateEmptyDatasetOperator(
task_id="create_bigquery_dataset",
dataset_id=BIGQUERY_DATASET_NAME,
location=REGION,
)

create_bigquery_table = BigQueryCreateEmptyTableOperator(
task_id="create_bigquery_table",
dataset_id=BIGQUERY_DATASET_NAME,
location=REGION,
table_id=BIGQUERY_TABLE,
schema_fields=[
{"name": "emp_name", "type": "STRING", "mode": "NULLABLE"},
{"name": "salary", "type": "FLOAT", "mode": "NULLABLE"},
],
)

insert_bigquery_data = BashOperator(
task_id="insert_bigquery_data",
bash_command=UPLOAD_DATA_TO_BIGQUERY,
)

create_gce_instance = ComputeEngineInsertInstanceOperator(
task_id="create_gce_instance",
project_id=PROJECT_ID,
zone=ZONE,
body=GCE_INSTANCE_BODY,
)

create_firewall_rule = BashOperator(
task_id="create_firewall_rule",
bash_command=CREATE_FIREWALL_RULE_COMMAND,
)

setup_postgres = SSHOperator(
task_id="setup_postgres",
ssh_hook=ComputeEngineSSHHook(
user="username",
instance_name=GCE_INSTANCE_NAME,
zone=ZONE,
project_id=PROJECT_ID,
use_oslogin=False,
use_iap_tunnel=False,
cmd_timeout=180,
),
command=SETUP_POSTGRES_COMMAND,
retries=4,
)

@task
def get_public_ip() -> str:
hook = ComputeEngineHook()
address = hook.get_instance_address(resource_id=GCE_INSTANCE_NAME, zone=ZONE, project_id=PROJECT_ID)
return address

get_public_ip_task = get_public_ip()

@task
def setup_connection(ip_address: str) -> None:
connection = Connection(
conn_id=CONNECTION_ID,
description="Example connection",
conn_type=CONNECTION_TYPE,
host=ip_address,
schema=DB_NAME,
login=DB_USER_NAME,
password=DB_USER_PASSWORD,
port=DB_PORT,
)
session = Session()
log.info("Removing connection %s if it exists", CONNECTION_ID)
query = session.query(Connection).filter(Connection.conn_id == CONNECTION_ID)
query.delete()

session.add(connection)
session.commit()
log.info("Connection %s created", CONNECTION_ID)

setup_connection_task = setup_connection(get_public_ip_task)

create_sql_table = SQLExecuteQueryOperator(
task_id="create_sql_table",
conn_id=CONNECTION_ID,
sql=SQL_CREATE_TABLE,
retries=4,
retry_delay=duration(seconds=20),
retry_exponential_backoff=False,
)

# [START howto_operator_bigquery_to_postgres]
bigquery_to_postgres = BigQueryToPostgresOperator(
task_id="bigquery_to_postgres",
dataset_table=f"{DATASET_NAME}.{TABLE}",
target_table_name=destination_table,
postgres_conn_id=CONNECTION_ID,
dataset_table=f"{BIGQUERY_DATASET_NAME}.{BIGQUERY_TABLE}",
target_table_name=SQL_TABLE,
batch_size=BATCH_SIZE,
replace=False,
)
# [END howto_operator_bigquery_to_postgres]

create_dataset = BigQueryCreateEmptyDatasetOperator(task_id="create_dataset", dataset_id=DATASET_NAME)
delete_bigquery_dataset = BigQueryDeleteDatasetOperator(
task_id="delete_bigquery_dataset",
dataset_id=BIGQUERY_DATASET_NAME,
delete_contents=True,
trigger_rule=TriggerRule.ALL_DONE,
)

create_table = BigQueryCreateEmptyTableOperator(
task_id="create_table",
dataset_id=DATASET_NAME,
table_id=TABLE,
schema_fields=[
{"name": "emp_name", "type": "STRING", "mode": "REQUIRED"},
{"name": "salary", "type": "INTEGER", "mode": "NULLABLE"},
],
delete_firewall_rule = BashOperator(
task_id="delete_firewall_rule",
bash_command=DELETE_FIREWALL_RULE_COMMAND,
trigger_rule=TriggerRule.ALL_DONE,
)

delete_dataset = BigQueryDeleteDatasetOperator(
task_id="delete_dataset", dataset_id=DATASET_NAME, delete_contents=True
delete_gce_instance = ComputeEngineDeleteInstanceOperator(
task_id="delete_gce_instance",
resource_id=GCE_INSTANCE_NAME,
zone=ZONE,
project_id=PROJECT_ID,
trigger_rule=TriggerRule.ALL_DONE,
)

delete_persistent_disk = BashOperator(
task_id="delete_persistent_disk",
bash_command=DELETE_PERSISTENT_DISK_COMMAND,
trigger_rule=TriggerRule.ALL_DONE,
)

delete_connection = BashOperator(
task_id="delete_connection",
bash_command=f"airflow connections delete {CONNECTION_ID}",
trigger_rule=TriggerRule.ALL_DONE,
)

# TEST SETUP
create_bigquery_dataset >> create_bigquery_table >> insert_bigquery_data
create_gce_instance >> setup_postgres
create_gce_instance >> get_public_ip_task >> setup_connection_task
[setup_postgres, setup_connection_task, create_firewall_rule] >> create_sql_table

(
# TEST SETUP
create_dataset
>> create_table
[insert_bigquery_data, create_sql_table]
# TEST BODY
>> bigquery_to_postgres
# TEST TEARDOWN
>> delete_dataset
)

# TEST TEARDOWN
bigquery_to_postgres >> [
delete_bigquery_dataset,
delete_firewall_rule,
delete_gce_instance,
delete_connection,
]
delete_gce_instance >> delete_persistent_disk

from tests.system.utils.watcher import watcher

# This test needs watcher in order to properly mark success/failure
Expand Down