Skip to content

Processes never end with multiprocessing #433

@0dey

Description

@0dey

Processes never end with multiprocessing

Description

When I run a pipe with multiprocessing on slurm, some processes never end, even after computations are done. This behavior is observed with 1 GPU and 2 CPUs (running processes seen with nvidia-smi cmd) and also with 0 GPU and 2 CPUs (running processes seen with htop cmd). Then, I have to scancel manually those slurm jobs after computations are done and saved.
This behavior is not observed with "simple" processing.

Those are the warnings I get:

[W CUDAGuardImpl.h:46] Warning: CUDA warning: driver shutting down (function uncheckedGetDevice)
[W CUDAGuardImpl.h:62] Warning: CUDA warning: invalid device ordinal (function uncheckedSetDevice)
[W CUDAGuardImpl.h:46] Warning: CUDA warning: driver shutting down (function uncheckedGetDevice)
[W CUDAGuardImpl.h:62] Warning: CUDA warning: invalid device ordinal (function uncheckedSetDevice)
[W CUDAGuardImpl.h:46] Warning: CUDA warning: driver shutting down (function uncheckedGetDevice)
[W CUDAGuardImpl.h:62] Warning: CUDA warning: invalid device ordinal (function uncheckedSetDevice)
[W CUDAGuardImpl.h:46] Warning: CUDA warning: driver shutting down (function uncheckedGetDevice)
[W CUDAGuardImpl.h:62] Warning: CUDA warning: invalid device ordinal (function uncheckedSetDevice)

How to reproduce the bug

import spacy
import edsnlp
import edsnlp, edsnlp.pipes as eds

nlp = edsnlp.load("charlson_qualifier")
nlp.add_pipe(eds.sections())
nlp.add_pipe(eds.sentences())
nlp.add_pipe(eds.normalizer())
nlp.add_pipe(eds.aids(), before="charlson_qualifier")
nlp.add_pipe(eds.negation())
nlp.add_pipe(eds.family())
nlp.add_pipe(eds.hypothesis())
nlp.add_pipe(eds.history())

sample_path = ""
save_path = ""

data = edsnlp.data.read_parquet(sample_path, converter="omop")

data = data.set_processing(
    num_cpu_workers=2, 
    num_gpu_workers=1,
    show_progress=True,
    process_start_method="spawn",
    backend="multiprocessing",
)

data = data.map_pipeline(nlp)
    
edsnlp.data.write_parquet(data, save_path, 
                          converter="ents", 
                          overwrite=True, 
                          write_in_worker=True
                         )

logger.info("Saved!")
#!/bin/bash 
#SBATCH --job-name="test"
#SBATCH -t 3:30:00 
#SBATCH --gres=gpu:v100:1
#SBATCH -N1-1 
#SBATCH -c2
#SBATCH --mem=40000 
#SBATCH -p gpuV100 
#SBATCH --container-image /scratch/images/sparkhadoop.sqsh  --container-mounts=/export/home/$USER:/export/home/$USER --container-mount-home --container-writable   --container-workdir=/
#SBATCH --output=../../logs/slurm_jobs/slurm-%j-stdout.log
#SBATCH --error=../../logs/slurm_jobs/slurm-%j-stderr.log

source $HOME/.user_conda/miniconda/etc/profile.d/conda.sh

/etc/start.sh

nvidia-smi

[PYTHON PATH] [.py SCRIPT PATH]

Your Environment

  • Operating System:
  • Python Version Used: 3.17.12
  • spaCy Version Used: 3.7.5
  • EDS-NLP Version Used: 0.17.2

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions