Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
71 changes: 71 additions & 0 deletions examples/submitit_train.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
import copy

import submitit
import torch
from torch.utils.data import Dataset
from transformers import BertForMaskedLM, Trainer, TrainingArguments

import torchrunx as trx


class DummyDataset(Dataset):
def __init__(self, max_text_length=16, num_samples=20000) -> None:
super().__init__()
self.input_ids = torch.randint(0, 30522, (num_samples, max_text_length))
self.labels = copy.deepcopy(self.input_ids)

def __len__(self):
return len(self.input_ids)

def __getitem__(self, index):
return {
"input_ids": self.input_ids[index],
"labels": self.labels[index],
}

def main():
model = BertForMaskedLM.from_pretrained("bert-base-uncased")
train_dataset = DummyDataset()

## Training

training_arguments = TrainingArguments(
output_dir = "output",
do_train = True,
per_device_train_batch_size = 16,
max_steps = 100,
)

trainer = Trainer(
model=model, # type: ignore
args=training_arguments,
train_dataset=train_dataset
)

trainer.train()

def launch():
trx.launch(
func=main,
func_kwargs={},
hostnames=trx.slurm_hosts(),
workers_per_host=trx.slurm_workers()
)

if __name__ == "__main__":
executor = submitit.SlurmExecutor(folder="logs")

executor.update_parameters(
time=60,
nodes=1,
ntasks_per_node=1,
mem="32G",
cpus_per_task=4,
gpus_per_node=2,
constraint="geforce3090",
partition="3090-gcondo",
stderr_to_stdout=True,
use_srun=False,
)

executor.submit(launch)
4 changes: 2 additions & 2 deletions src/torchrunx/launcher.py
Original file line number Diff line number Diff line change
Expand Up @@ -191,8 +191,8 @@ def launch(
ssh_config_file=ssh_config_file,
)
raise
#
finally:
print_process.kill()

print_process.terminate() # TODO: or close?
return_values: dict[int, Any] = dict(ChainMap(*[s.return_values for s in agent_statuses]))
return return_values