# Initialize the git submodules
git submodule init --update
# Install dependencies
conda env create -f environment.yml
conda activate drivetrack
pip install -r requirements.txt --no-dependencies
# Build NLSPN DeformConv
cd nlspn/src/model/deformconv
sh make.sh
cd ../../../../
# Build CompletionFormer DeformConv
cd completionformer/src/model/deformconv
sh make.sh
cd ../../../../
Note that the depdencies that ship with the Waymo SDK need to be upgraded, which is why we install using pip and the --no-dependencies
flag.
First, obtain access to the Waymo Open Dataset if you don't have access already.
An example of generating DriveTrack (requires access to the Waymo Open Dataset in GCS):
python generate_drivetrack.py \
--output-dir "output-path" \
--use-gcsfs \
--split "training" \
--version "1.0.0" \
--gpus 0,1,2
Alternatively, if you have the Waymo dataset downloaded locally, you can specify a local path instead of using the GCS bucket:
python generate_drivetrack.py \
--output-dir "output-path" \
--local-dataset-path "dataset-path" \
--split "training" \
--version "1.0.0" \
--gpus 0,1,2
A full list of arguments can be found in generate_drivetrack.py
.
DriveTrack was made using the Waymo Open Dataset, provide by Waymo LLC under license terms available at waymo.com/open.
If you use this code or our data for your research, please cite:
DriveTrack: A Benchmark for Long-Range Point Tracking in Real-World Videos
Arjun Balasingam, Joseph Chandler, Chenning Li, Zhoutong Zhang, Hari Balakrishnan.
To appear at CVPR 2024
@inproceedings{balasingam2024drivetrack,
author = {Arjun Balasingam and Joseph Chandler and Chenning Li and Zhoutong Zhang and Hari Balakrishnan},
title = {DriveTrack: A Benchmark for Long-Range Point Tracking in Real-World Videos},
booktitle = {CVPR},
year = {2024}
}